Paul Dirac

Paul Dirac

Paul Dirac 1933

Paul Adrien Maurice Dirac (* 8. August 1902 in Bristol; † 20. Oktober 1984 in Tallahassee) war ein britischer Physiker, Nobelpreisträger und Mitbegründer der Quantenphysik. Eine seiner wichtigsten Entdeckungen ist in der Dirac-Gleichung von 1928 beschrieben, in der Einsteins Spezielle Relativitätstheorie und die Quantenphysik erstmals zusammengebracht werden konnten. Ferner legte er die Grundlagen für den späteren Nachweis von Antimaterie.

Leben

Dirac wurde in Bristol, Gloucestershire, England geboren. Sein Vater Charles Dirac war Schweizer mit Wurzeln im französischsprachigen Saint-Maurice im Wallis; er unterrichtete in Bristol an Diracs Schule das Fach Französisch. Seine Mutter, Florence Holten, war die Tochter eines Seemanns aus Cornwall. Seine Kindheit war infolge des strengen und autoritären Verhaltens des Vaters unglücklich − ein Bruder nahm sich das Leben.

Dirac studierte zunächst 1921 Elektrotechnik in Bristol, wechselte dann zur Mathematik und bekam 1923 ein Stipendium für die Universität Cambridge, wo er bei Ralph Howard Fowler studierte. 1926 schloss er das Studium mit einer Dissertation zur Quantenmechanik ab.

Paul Dirac mit seiner Frau Margit
Juli 1963 in Kopenhagen

Von 1932 bis 1969 war Dirac Professor des Lucasischen Lehrstuhls für Mathematik an der Universität Cambridge. 1937 heiratete er Margit (1904–2002), die Schwester des Physikers Eugene Wigner. Der Mathematiker Gabriel Andrew Dirac aus der ersten Ehe seiner Frau war sein Stiefsohn. Während des Zweiten Weltkriegs arbeitete Dirac an Gaszentrifugen zur Urananreicherung. Ab 1970 war er an der Florida State University in Tallahassee in Florida tätig.

Dirac war von zurückhaltender Natur. Es machte ihm nichts aus, in Gesellschaft zu schweigen und auf Fragen nur sehr wortkarge, einer strikten Wahrheitsliebe verpflichtete Antworten zu geben, wovon zahlreiche Anekdoten verbreitet waren.

Dirac war überzeugter Atheist. Auf die Frage nach seiner Meinung zu Diracs Ansichten bemerkte Wolfgang Pauli in Anspielung auf das islamische Gottesbekenntnis: „Wenn ich Dirac richtig verstehe, meint er Folgendes: Es gibt keinen Gott und Dirac ist sein Prophet.“

Leistungen

1925 fand Paul Dirac in seiner Dissertation die klassische Entsprechung der neuen quantenmechanischen Kommutatoren von Heisenberg, Born und Jordan mit den Poisson-Klammern der klassischen Mechanik. 1926 entwickelte er eine abstrakte Fassung der Quantenmechanik („Transformationstheorie“), die die Matrizenmechanik Heisenbergs und die Wellenmechanik Schrödingers als Spezialfälle enthielt. Somit konnte er unabhängig von Schrödinger die Äquivalenz beider Theorien zeigen. Die klassische Mechanik ergibt sich in seiner Theorie als Spezialfall der Quantenmechanik. Von Dirac stammt auch die Einführung des Wechselwirkungsbilds, das sowohl Schrödinger- als auch Heisenbergbild verwendet.

Paul Dirac an der Tafel

1928 stellte er auf Grundlage der Arbeit von Wolfgang Pauli über das Ausschließungsprinzip die nach ihm benannte Dirac-Gleichung auf,[1] bei der es sich um eine relativistische, also auf der speziellen Relativitätstheorie beruhende Wellengleichung 1. Ordnung zur Beschreibung des Elektrons handelt. Dirac fand sie, indem er von der relativistischen Wellengleichung 2. Ordnung von Charles Galton Darwin ausging (einer Weiterentwicklung der Klein-Gordon-Gleichung) und ein wenig mit „Gleichungen herumspielte“, das heißt, er suchte einen Ansatz für eine entsprechende Gleichung 1. Ordnung, die sich nur mit dem Einführen von Spinoren und Dirac-Matrizen gewinnen ließ und deren „Quadrat“ wieder die relativistische Wellengleichung ergibt. Sie lieferte z. B. eine theoretische Erklärung für den anomalen Zeeman-Effekt und die Feinstruktur in der Atomspektroskopie und erklärte den Spin, der bis dahin in der Quantenmechanik als grundlegendes, aber unverstandenes Phänomen bekannt war, als natürliche Folge seiner relativistischen Wellengleichung.

Seine Gleichung erlaubte es Dirac auch, die Löchertheorie zu formulieren und die Existenz des Positrons, des Antiteilchens des Elektrons, vorherzusagen (er scheute aber zunächst vor der öffentlichen Postulierung eines neuen Teilchens zurück und identifizierte das negative Antiteilchen des Elektrons mit dem Proton).[2] Das Positron wurde darauf 1932 von Carl David Anderson als neues Teilchen in kosmischer Strahlung nachgewiesen. Im Dirac-Bild der Quantenfeldtheorie besteht das Vakuum in Analogie zur Festkörperphysik aus einem bis zur Fermigrenze gefüllten Dirac-See von Elektronen. Paarerzeugung im Vakuum ist die Anregung eines Elektrons aus diesem Dirac-See über die Fermigrenze hinaus - das hinterlassene „Loch“ in dem Diracsee ist das Positron.

Sein 1930 veröffentlichtes Buch The Principles of Quantum Mechanics (deutsch Die Prinzipien der Quantenmechanik, 1930) war wegbereitend für den Gebrauch von linearen Operatoren als Verallgemeinerung („Transformationstheorie“) der Theorien von Heisenberg und Schrödinger. Mit ihr wurde auch das Deltafunktional (eine spezielle Distribution, auch Diracfunktion oder Deltafunktion genannt) sowie die Bra-Ket-Notation verwendet, in der $ | \Psi \rang $ einen Zustandsvektor im Hilbertraum eines Systems bezeichnet (z. B. Anfangszustand) und $ \lang \Psi | $ den zu ihm dualen Vektor (z. B. Endzustand in der Beschreibung eines physikalischen Prozesses). Das oben genannte Lehrbuch blieb bis heute ein Standardwerk und war in Diracs Augen so perfekt, dass er in seinen Vorlesungen einfach daraus vorlas.

Dirac schuf den Begriff des Bosons in Anerkennung der Verdienste von Satyendra Nath Bose um die Quantenstatistik. Er gilt mit Enrico Fermi als Erfinder der Statistik der Fermionen (Fermi-Dirac-Statistik), erkannte aber Fermis Priorität an.

1931 postulierte er als erster die Existenz eines magnetischen Monopols,[3] also eines Teilchens mit magnetischer Ladung, ähnlich der elektrischen Ladung z. B. beim Elektron. Die Existenz eines solchen Teilchens, das bisher nicht beobachtet wurde, würde die Quantisierung der elektrischen Ladung erklären. Dahinter stecken letztlich topologische Ideen, die hier erstmals in der Quantenmechanik auftauchen.

In seiner „Large number hypothesis“ versucht Dirac – plausibler als ähnliche Versuche Eddingtons – einen Zusammenhang zwischen der Größe der Fundamentalkonstanten und der gegenwärtigen Ausdehnung des Universums zu geben.[4] Daraus ergeben sich Spekulationen über die zeitliche Variation der Naturkonstanten, denen bis heute experimentell nachgegangen wird. Diracs großer Konkurrent auf dem Gebiet quantenmechanischer Formalismen, Pascual Jordan, griff diese Ideen in einer eigenen Theorie der Gravitation mit variabler Gravitationskonstante auf.

In seiner Untersuchung der klassischen Theorie strahlender Elektronen von 1938 tauchten neben „runaway solutions“ auch erstmals Renormierungsideen auf.[5] Das Auftreten divergenter Ausdrücke in der üblichen Renormierungstheorie der Quantenelektrodynamik, die dann in die Definition der „nackten“ Ladung und Masse zum Verschwinden gebracht werden, lehnte er aber zeitlebens ab.

Paul Dirac, Wolfgang Pauli und Rudolf Peierls, 1953 in Birmingham

Dirac ist auch der Erfinder vieler weiterer Formalismen der theoretischen Physik. Beispielsweise stammt von ihm die ursprüngliche Idee zu Pfadintegralen,[6] die als alternativer Zugang zur Quantenmechanik aber erst durch Richard Feynman „ernst genommen“ und ausgebaut wurden. In einer Arbeit aus dem Jahre 1949 erfand er die „light cone quantization“ (Lichtfrontformalismus) der Quantenfeldtheorie,[7] die in der Hochenergiephysik viel verwendet wird. In den 1950er Jahren versuchte Dirac dann, den von ihm postulierten Dirac-See als universellen Äther auszulegen.[8][9][10]

Er untersuchte auch ganz allgemein hamiltonsche Systeme mit „constraints“ (Zwangsbedingungen), speziell um einen Zugang zur Quantisierung der Gravitation zu finden. Diese Arbeiten gingen später in der BRST-Formulierung auf. Seine Untersuchung ausgedehnter Systeme in der Quantenfeldtheorie 1962[11] ist ein Vorläufer der p-branes und bag-Modelle späterer Jahre.

Ehrungen

Grabstätte von Paul Dirac und seiner Frau Margit auf dem Roselawn Cemetery, Tallahassee, Florida
Gedenkplatte aus grünem Schiefer in der Westminster Abbey

Im Jahr 1933 erhielt Dirac zusammen mit Erwin Schrödinger den Nobelpreis für Physik „für die Entdeckung einer neuen, nützlichen Form der Atomtheorie“. 1930 wurde er als Mitglied („Fellow“) in die Royal Society gewählt, die ihm 1939 die Royal Medal und 1952 die Copley-Medaille verlieh. 1950 wurde er in die American Academy of Arts and Sciences gewählt. 1952 wurde er mit der Max-Planck-Medaille ausgezeichnet. 1958 wurde er in die Accademia Nazionale dei Lincei in Rom aufgenommen; im gleichen Jahr erfolgte auch die Wahl zum Mitglied der Leopoldina. Außerdem verlieh ihm die britische Krone den Order of Merit.

Ihm zu Ehren wird die Dirac-Medaille (ICTP) an Wissenschaftler für herausragende Leistungen verliehen und ebenso die Dirac Medal (UNSW) und die Dirac-Medaille (IOP). Nach Paul Dirac ist auch ein Asteroid benannt.[12]

Er liegt in Tallahassee begraben, es erinnert aber seit November 1995 ein Stein im Fußboden der Westminster Abbey nahe Newtons Grab an ihn, auf dem auch die Dirac-Gleichung eingemeißelt ist.[13] Der Dean von Westminster Abbey Michael Mayne hatte sich dem lange widersetzt, da Dirac bekennender Atheist war.[14]

Siehe auch

  • Dirac-Kamm
  • Dirac-Spinor
  • Dirac-Funktion, siehe Delta-Distribution
  • Dirac-Konstante
  • Diracmaß

Werke

  • The Principles of Quantum Mechanics, Oxford: Oxford University Press, 1958, ISBN 0-19-852011-5 (zuerst 1930, ab 3. Auflage 1947 bra-ket Notation, 4. Aufl.1957)
  • Lectures on quantum mechanics 1966
  • General Theory of Relativity, Princeton: Landmarks in Physics, 1996, ISBN 0-691-01146-X (zuerst 1975)
  • Directions in physics, 1978 (Vorlesungen Australien 1975)
  • Dalitz (Hrsg.) Collected Works of P.A.M.Dirac (1924–1938), Cambridge 1996

Einige Aufsätze:

  • Proceedings of the Royal Society Bd. 109, 1925, S. 642 (Zusammenhang klassischer Poisson-Brackett mit quantenmechanischer Kommutator)
  • Physical interpretation of quantum dynamics, Proceedings of the Royal Society, Bd. 113, 1927, S. 621 (Transformationstheorie, seine allgemeine Formulierung der Quantenmechanik)
  • On the theory of quantum mechanics, Proceedings of the Royal Society Bd. 112, 1926, 661 (Fermi-Dirac und Bose-Statistik)
  • Quantum theory of emission and absorption of radiation (zweite Quantisierung, Grundlagen Quantenfeldtheorie)
  • The quantum theory of the electron, Proceedings or the Royal Society Bd. 117, 1928, S. 610–624, Bd. 118, S. 351 (Diracgleichung, spin)
  • A theory of electrons and positrons, Proceedings of the Royal Society, Bd. 126, 1930, 360 (Löchertheorie)
  • Quantized singularities of the electromagnetic field (Memento vom 19. Februar 2008 im Internet Archive), Proc.Roy.Soc. Bd. 133, 1931, S. 60 (magnetisches Monopol, Vorhersage Positron)
  • Proceedings Cambridge Philosophical Society, Bd. 35, 1939, S. 416 (erstmals bra-ket Notation)
  • Proceedings Cambridge Philosophical Society, Bd. 25, 1929, S. 62 (Dichtematrix, weniger abstrakt als bei John von Neumann)

Literatur

  • Richard Dalitz und Rudolf Peierls: Paul Adrien Maurice Dirac, 8 August 1902–20 October 1984. In: Biographical Memoirs of Fellows of the Royal Society of London 32. 1986, S. 137–185
  • Helge Kragh: Dirac. Cambridge University Press, Cambridge 1990. ISBN 0-521-38089-8
  • Abraham Pais und Peter Goddard: Paul Dirac: the man and his work. Cambridge University Press, Cambridge 2005, ISBN 0-521-01953-2.
  • Abdus Salam, Eugene Wigner (Hrsg.): Aspects of quantum theory. Cambridge University Press, Cambridge 1972, ISBN 0-521-08600-0. (darin u.a.: Eden, John Polkinghorne Dirac in Cambridge, Van Vleck Travels with Dirac in the Rockies, Jagdish Mehra The golden age of theoretical physics: Dirac’s scientific work from 1924–1933)
  • John Gerald Taylor: Tributes to Paul Dirac. A. Hilger, Bristol 1987, ISBN 0-85274-480-3.
  • Graham Farmelo: The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius. Faber and Faber, London 2009, ISBN 978-0-571-22278-0 (vor allem für seine Dirac Biographie erhielt er 2012 die Kelvin Medal des Institute of Physics)
    • „Der seltsamste Mensch.“ Das verborgene Leben des Quantengenies Paul Dirac. Übersetzung Reimara Rössler. Springer, Heidelberg 2016. ISBN 3662499495.
  • Howard Baer, Alexander Belyaev (Herausgeber): Proceedings of the Dirac Centennial Symposium. University of Florida, Tallahassee 6.–7. Dezember 2002, World Scientific 2003 (unter anderem Monica Dirac über ihren Vater)

Weblinks

 <Lang> Commons: Paul Dirac – Sammlung von Bildern, Videos und Audiodateien
 Wikiquote: Paul Dirac – Zitate

Schriften

Video

Einzelnachweise

  1. P.A.M. Dirac, The quantum theory of the electron, Proceedings or the Royal Society Bd. 117, 1928, S. 610, Bd. 118, S. 351
  2. Dirac Proc. Roy. Soc. A 126, 1929, S. 360, Nature, Band 126, 1930, S. 605. Dirac meinte später, damals ging man allgemein davon aus, Elektron und Proton wären die einzigen Elementarteilchen. Robert Oppenheimer, Igor Tamm und Hermann Weyl kritisierten die Identifikation schon 1930 und auch Dirac wandte sich 1931 davon ab und postulierte ein neues Teilchen (Proc. Roy. Soc. A 133, 1931, S. 60). Der Name Positron taucht zuerst 1933 in einer Arbeit von Carl Anderson auf (Physical Review, Band 43, S. 491). Abraham Pais Paul Dirac. Aspects of his life and work, S. 15f, in Pais u.a. Paul Dirac, Cambridge University Press 1998
  3. Proceedings Royal Society A, Bd. 133, S. 60 u. Physical Review Bd. 74, 1948, S. 817
  4. Nature Bd. 139, 1937, S. 323
  5. Proceedings Roal Society Bd. 167, 1938, S. 148
  6. Physikalische Zeitschrift der Sowjetunion Bd. 3, 1933, S. 64
  7. Reviews of modern physics
  8. P.A.M. Dirac. Is there an Aether? Nature, 168:906-7, 1951.
  9. P.A.M. Dirac. The Stellung des Aethers in the Physik. Naturwissenschaftliche Rundschau, 6:441-6, 1953
  10. P.A.M. Dirac. Quantum mechanics and the aether. The Scientific Monthly, 78:142-6, 1954
  11. Proceedings Royal Society A, Bd. 268, S. 57
  12. 5997 Dirac (1983 TH9) JPL Small-Body Database Browser; 5997 Dirac en.wikipedia (Abgerufen am 11. Mai 2010)
  13. Westminster Abbey, Dirac
  14. Blog des Dirac-Biographen Graham Farmelo

Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.