Wellengleichung

Wellengleichung

Die Wellengleichung beschreibt mathematisch die Ausbreitung einer Welle z. B. von Schall oder Licht.

Wenn das Medium oder Vakuum die Welle nur durchleitet und nicht selbst Wellen erzeugt, handelt es sich genauer um die homogene Wellengleichung, die lineare partielle Differentialgleichung zweiter Ordnung

$ \frac 1 {c^2} \frac{\partial^2 u}{\partial t^{\prime 2}}-\sum_{i=1}^{n} \frac{\partial^2 u}{\partial x_i^2} = 0 $

für eine reelle Funktion $ u(t',x_1,\dots, x_n) $ der Raumzeit. Hierbei ist $ n $ die Dimension des Raumes. Der Parameter $ c $ ist die Ausbreitungsgeschwindigkeit der Welle, also bei Schall (im homogenen und isotropen Medium) die Schallgeschwindigkeit und bei Licht die Lichtgeschwindigkeit.

Wenn man Zeiten $ t' $ durch Laufstrecken $ t=c\,t' $ angibt, hat die Wellengleichung die Form wie für $ c=1 $ (siehe auch natürliche Einheiten).

Die Wellengleichung heißt auch d'Alembert-Gleichung. Sie zählt zu den hyperbolischen Differentialgleichungen.

Der Differentialoperator der Wellengleichung,

$ \Box = \frac{\partial ^2}{\partial t^2} - \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} $,

ist der d’Alembert-Operator und wird dem Laplace-Operator $ \Delta= \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} $ entsprechend mit dem Formelzeichen $ \Box $, gesprochen Box, notiert.

Die Lösungen der Wellengleichung heißen Wellen. Weil die Gleichung linear ist, überlagern sich Wellen, ohne sich gegenseitig zu beeinflussen. Da die Koeffizienten der Wellengleichung nicht vom Ort oder der Zeit abhängen, verhalten sich Wellen unabhängig davon, wo oder wann und in welche Richtung man sie anregt. Verschobene, verspätete oder gedrehte Wellen sind ebenfalls Lösungen der Wellengleichung.

Unter der inhomogenen Wellengleichung versteht man die linear inhomogene partielle Differentialgleichung

$ \Box u = v\ . $

Sie beschreibt die zeitliche Entwicklung von Wellen in einem Medium, das selbst Wellen erzeugt. Die Inhomogenität $ v $ heißt auch Quelle der Welle $ u $.

Die Wellengleichung in einer räumlichen Dimension

Der d'Alembert-Operator in einer räumlichen Dimension

$ \frac{\partial^2 }{\partial t^2}-\frac{\partial^2 }{\partial x^2} $

zerfällt wie in der binomischen Formel $ (a^2-b^2)=(a-b)(a+b) $ in das Produkt $ \left(\frac{\partial}{\partial t}-\frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+\frac{\partial}{\partial x}\right) $.

Daher hat die Wellengleichung in einer räumlichen Dimension die allgemeine Lösung

$ u\left(t, x\right) = f(x + t) + g(x - t) $

mit beliebigen zweifach differenzierbaren Funktionen $ f(x) $ und $ g(x) $.

Der erste Summand $ f(x+t) $ ist eine nach links und der zweite Summand $ g(x-t) $ eine nach rechts mit unveränderter Form laufende Welle.

Die Geraden $ x \pm t=\text{constant} $ sind die Charakteristiken der Wellengleichung.

Seien

$ \phi(x)=u(0,x)=f(x)+g(x) $

der anfängliche Wert und

$ \psi(x)=\frac{\partial u}{\partial t} (0,x)=f'(x)-g'(x) $

die anfängliche Zeitableitung der Welle. Diese Funktionen des Raumes heißen zusammenfassend Anfangswerte der Welle.

Die Integration der letzten Gleichung ergibt

$ f(x)-g(x)=\int_{x_0}^x \psi(\xi)\,\mathrm{d}\xi\ . $

Durch Auflösen erhält man

$ f(x)=\frac{1}{2}\left(\phi(x)+\int_{x_0}^x \psi(\xi)\,\mathrm{d}\xi\right)\ . $
$ g(x)=\frac{1}{2}\left(\phi(x)-\int_{x_0}^x \psi(\xi)\,\mathrm{d}\xi\right)\ . $

Ausgedrückt durch ihre Anfangswerte lautet daher die Lösung der Wellengleichung

$ u(t,x)=\frac{1}{2}\left(\phi(x+t)+\phi(x-t)+\int_{x-t}^{x+t} \psi(\xi)\,\mathrm{d}\xi\right)\ . $

Das ist auch als d'Alembert Lösung der Wellengleichung bekannt (d'Alembert, 1740er Jahre).[1]

Die Wellengleichung in drei räumlichen Dimensionen

Die allgemeine Lösung der Wellengleichung lässt sich als Linearkombination von ebenen Wellen

$ \mathrm{e}^{\mathrm{i}(\mathbf k \mathbf x -\omega t)} $

mit $ \omega = \left|\mathbf k\right| $ schreiben. Solch eine ebene Welle bewegt sich in Richtung von $ \mathbf k $. Bei der Superposition solcher Lösungen

$ u(t,\mathbf x)=\text{Re}\int\mathrm d^n k\,a(\mathbf{k})\, \mathrm{e}^{\mathrm{i}(\mathbf k\, \mathbf x -|\mathbf{k}|\,t)} $

ist allerdings nicht offensichtlich, wie ihre Anfangswerte mit der späteren Lösung zusammenhängen.

In drei Raumdimensionen lässt sich die allgemeine Lösung der homogenen Wellengleichung durch Mittelwerte der Anfangswerte darstellen. Sei die Funktion $ u(t,\mathbf x) $ und ihre Zeitableitung zur Anfangszeit $ t=0 $ durch Funktionen $ \phi $ und $ \psi $ gegeben,

$ u(0,\mathbf x)=\phi(\mathbf x)\,,\ \frac \partial {\partial t} u(0,\mathbf x)=\psi(\mathbf x)\,, $

dann ist die Linearkombination von Mittelwerten

$ u(t,\mathbf x)=t\,M_{t,\mathbf x}[\psi] + \frac \partial {\partial t}(t\,M_{t,\mathbf x}[\phi]) $

die zugehörige Lösung der homogenen Wellengleichung. Dabei bezeichnet

$ M_{t,\mathbf x}[\chi]=\frac{1}{4\,\pi} \int_{-1}^{1}\!\!\mathrm d \cos\theta \int_0^{2\pi}\!\!\mathrm d \varphi\, \chi(\mathbf x + t\mathbf n(\theta, \varphi))\quad \text{mit}\quad \mathbf n(\theta, \varphi)= \begin{pmatrix} \sin\theta\cos\varphi\\\sin\theta\sin\varphi\\\cos\theta \end{pmatrix} $

den Mittelwert der Funktion $ \chi\,, $ gemittelt über eine Kugelschale um den Punkt $ \mathbf x $ mit Radius $ |t|. $ Insbesondere ist $ M_{0,\mathbf x}[\chi]=\chi(\mathbf x). $

Wie diese Darstellung der Lösung durch die Anfangswerte zeigt, hängt die Lösung stetig von den Anfangswerten ab und hängt zur Zeit $ t $ am Ort $ \mathbf x $ nur von den Anfangswerten an den Orten $ \mathbf y $ ab, von denen man $ \mathbf x $ in der Laufzeit $ |t| $ mit Geschwindigkeit $ c=1 $ erreichen kann. Sie genügt damit dem Huygensschen Prinzip.

Für eindimensionale Systeme und in geraden Raumdimensionen gilt dieses Prinzip nicht. Dort hängen die Lösungen zur Zeit $ t $ auch von Anfangswerten an näheren Punkten $ \mathbf y $ ab, von denen aus man $ \mathbf x $ mit geringerer Geschwindigkeit erreicht.

Die Lösung der inhomogenen Wellengleichung in drei Raumdimensionen

$ u(t,\mathbf x)=t\,M_{t,\mathbf x}[\psi] + \frac \partial {\partial t}(t\,M_{t,\mathbf x}[\phi]) +\frac{1}{4\pi}\int_{|\mathbf z| \le |t|}\!\!\mathrm d^3 z \, \frac{v( t - \text{sign}(t)|\mathbf z|,\mathbf x + \mathbf z)}{|\mathbf z|} $

hängt am Ort $ \mathbf x $ zur Zeit $ t>0 $ nur von der Inhomogenität auf dem Rückwärtslichtkegel von $ \mathbf x $ ab, zu negativen Zeiten nur von der Inhomogenität auf dem Vorwärtslichtkegel. Die Inhomogenität und die Anfangswerte wirken sich auf die Lösung mit Lichtgeschwindigkeit aus.

Retardiertes Potential

Das retardierte Potential

$ u_{\text{retardiert}}(t,\mathbf x)=\frac{1}{4\pi} \int_{\mathbb R^3}\mathrm d^3 z\, \frac{v(t-|\mathbf z|,\, \mathbf x+\mathbf z)}{ |\mathbf z|} $

ist eine Lösung der inhomogenen Wellengleichung, die voraussetzt, dass die Inhomogenität $ v $ auf allen Rückwärtslichtkegeln schneller als $ 1/r^2 $ abfällt. Es ist die Welle, die vollständig vom Medium erzeugt ist ohne eine durchlaufende Welle.

In der Elektrodynamik schränkt die Kontinuitätsgleichung die Inhomogenität ein. So kann die Ladungsdichte einer nichtverschwindenden Gesamtladung zu keiner Zeit überall verschwinden. In der Störungstheorie treten Inhomogenitäten auf, die räumlich nicht genügend schnell abfallen. Dann divergiert das zugehörige retardierte Integral und hat eine sogenannte Infrarotdivergenz.

Die etwas aufwendigere Darstellung der Lösung durch ihre Anfangswerte zu endlicher Zeit und durch Integrale über endliche Abschnitte des Lichtkegels ist frei von solchen Infrarotdivergenzen.

Lorentzinvarianz des d'Alembert-Operators

Der d'Alembert-Operator $ \Box $ ist invariant unter Translationen und Lorentztransformationen $ \Lambda $ in dem Sinne, dass er angewendet auf Lorentzverkettete Funktionen $ f \circ \Lambda^{-1} $ dasselbe ergibt, wie die Lorentzverkettete abgeleitete Funktion

$ (\Box f)\circ \Lambda^{-1} = \Box\,(f\circ \Lambda^{-1})\ . $

Entsprechend ist der Laplace-Operator invariant unter Translationen und Drehungen.

Die homogene Wellengleichung ist sogar unter konformen Transformationen, insbesondere unter Streckungen invariant.

Siehe auch

Literatur

  • Richard Courant, David Hilbert: Methoden der mathematischen Physik. Band 2. Zweite Auflage. Springer Verlag, Berlin 1968 (Heidelberger Taschenbücher 31, ISSN 0073-1684).
  • Fritz John: Partial Differential Equations, 4. Auflage, Springer 1982

Weblinks

Einzelnachweise

  1. Eric Weisstein, d'Alembert's solution, Mathworld

Diese Artikel könnten dir auch gefallen



Die letzten News


23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.