Louis de Broglie

Louis de Broglie

Louis-Victor de Broglie
Signature Louis de Broglie.svg

Louis-Victor Pierre Raymond de Broglie [lwiː vikˈtɔʀ pjɛːʀ ʀɛˈmɔ̃ də ˈbʀœj] Audio-Datei / Hörbeispiel anhören?/i (* 15. August 1892 in Dieppe, Normandie; † 19. März 1987 in Louveciennes, Département Yvelines) war ein französischer Physiker. Er gehörte zur französischen Adelsfamilie der Broglies und war jüngerer Bruder des Experimentalphysikers Maurice de Broglie.

De Broglie gilt als einer der bedeutendsten Physiker des 20. Jahrhunderts, für seine Entdeckung der Wellennatur des Elektrons (Welle-Teilchen-Dualismus) in seiner Dissertation Recherches sur la théorie des quanta und der daraus resultierenden Theorie der Materiewellen erhielt er 1929 den Nobelpreis für Physik.

Leben

Studien und Erster Weltkrieg

Louis-Victor de Broglie, viertes Kind von Victor de Broglie, 5. Herzog de Broglie und Pauline d'Armaillé wurde 1892 in Dieppe geboren. Louis-Victor besuchte das Lycée Janson de Sailly in Paris. Im Jahr 1960 folgte er seinem kinderlosen Bruder Maurice als Herzog nach.

Während seines Studiums an der Pariser Sorbonne befasste sich Louis-Victor zunächst mit der Philosophie und der Geschichte, insbesondere mit Rechtsgeschichte und politischer Geschichte des Mittelalters. Nebenbei las er Werke von Henri Poincaré wie z. B. Wissenschaft und Hypothese und Der Wert der Wissenschaft. 1910 schloss er sein erstes Studium mit dem Lizenziat ab.

Auf Anregung seines siebzehn Jahre älteren Bruders Maurice, eines promovierten Physikers, studierte Louis de Broglie ab 1911 Mathematik und Physik. Maurice, der sich nach dem Tode des Vaters 1906 um Erziehung und Entwicklung seines jüngeren Bruders gekümmert hatte, versorgte Louis nun mit den Texten der Referate und Diskussionen der ersten Solvay-Konferenz, die 1911 in Brüssel stattfand. Durch diese Aufzeichnungen kam Louis de Broglie das erste Mal in intensiven Kontakt mit der Quantenphysik, die sein späteres physikalisches Schaffen prägen sollte.

Durch den Ersten Weltkrieg musste de Broglie sein Studium mehrere Jahre unterbrechen. Er wurde Nachrichtenoffizier und verbrachte den größten Teil seiner Dienstzeit in der funktelegraphischen Station des Eiffelturms. Während seines Militärdienstes befasste sich de Broglie mit der Elektrotechnik und dem Nachrichtenwesen sowie mit der Ausbildung von elektrotechnischem Personal.

Wissenschaftliche Karriere

Nach der Entlassung aus dem Heeresdienst 1919 setzte de Broglie seine Studien fort und wurde Mitarbeiter im Privatlabor seines Bruders, in dem er vorrangig über Röntgenspektroskopie und den Photoeffekt arbeitete. Ende des Jahres 1923 erschienen de Broglies erste Abhandlungen zur Wellenmechanik.

1924 schloss de Broglie sein Studium mit der berühmt gewordenen Dissertation Recherches sur la théorie des Quanta ab, in der er vermutete, dass der Welle-Teilchen-Dualismus auf jegliche feste Materie anzuwenden sei. Diese kühne Idee wurde 1926 und 1927 vom Institut de France ausgezeichnet. 1929 folgten für die Entdeckung der Wellennatur der Elektronen die begehrte Medaille Henri Poincaré der Académie des sciences und der Nobelpreis für Physik.

1927 war de Broglie einer der Teilnehmer des 5. Solvay-Kongresses in Brüssel. 1929 wurde er zum Professor für Theoretische Physik am Institut Henri Poincaré in Paris berufen, wechselte jedoch 1932 an die Sorbonne, wo er bis 1962 lehrte. 1933 wurde de Broglie Mitglied der Académie des sciences.

Neben seinen Arbeiten auf physikalischem Gebiet veröffentlichte de Broglie vor allem während seiner Zeit am Institut Henri Poincaré einige philosophische und problemgeschichtliche Aufsätze. 1938 erhielt er die Max-Planck-Medaille.

Zweiter Weltkrieg und danach

Während der Kämpfe zwischen Frankreich und Deutschland im Zweiten Weltkrieg wurde de Broglie mit der dokumentarischen Sammlung der in den USA veröffentlichten Arbeiten über Nachrichtenübertragung betraut. 1941 veröffentlichte er in diesem Zusammenhang ein Buch über Hochfrequenztechnik.

Der Patriotismus de Broglies während der deutschen Okkupation kommt in seiner Gedenkvorlesung für den französischen Gelehrten André-Marie Ampère im September 1940 zum Ausdruck:

„Und gerade darum ist ein großer Mann wie Ampère der Nachwelt ein leuchtendes Beispiel. – In den gegenwärtigen Zeitläufen, in denen alles die Franzosen zur Sammlung aufruft, ist es heilsam für sie, über solche Beispiele nachzusinnen. Wenn wir unsere Gedanken auf sie hinlenken, sehen wir plötzlich alle die großen Gestalten der glorreichen Vergangenheit Frankreichs vor uns auftauchen, als wollten sie uns zur Hoffnung auf einen neuen Frühling und zur Arbeit aufrufen.“

1944 wurde Louis de Broglie Mitglied der Académie française und nach dem Zweiten Weltkrieg Berater der französischen Atomenergiekommission.

Louis-Victor de Broglie starb am 19. März 1987 in Louveciennes bei Paris.

Leistungen

Frühe Forschungsarbeiten

In seinen frühen Forschungen, vor allem während der Arbeit im physikalischen Labor seines Bruders Maurice, beschäftigte de Broglie sich mit dem lichtelektrischen Effekt von Röntgenstrahlen. 1928 veröffentlichte er zusammen mit seinem Bruder ein Buch über Röntgenphysik. Anfang der 20er Jahre widmete er sich der Quantentheorie. Es gelang ihm, die Quantenformel Max Plancks aus der Teilchentheorie des Lichts abzuleiten.

Eine kühne Doktorarbeit – Elektronen mit Welleneigenschaften

1924 schloss de Broglie sein Studium mit der berühmt gewordenen Dissertation Recherches sur la théorie des quanta (Untersuchungen zur Quantentheorie) ab. Nach gründlicher Analyse der von Albert Einstein gefundenen Äquivalenz von Masse und Energie, die in der Formel $ E=mc^2 $ ihren Ausdruck findet, und der Erkenntnisse der Atomphysik kommt de Broglie zu der Überzeugung, Energie sei wie Masse in Form von Teilchen in kleinen Raumbereichen lokalisiert. Der Quantencharakter der Materie, wie er sich beispielsweise in den Atomspektren zeigt, sei aber nur zu erklären, wenn jeder Masse $ m $ nach der von Max Planck postulierten Beziehung $ E=h\nu $ eine Frequenz $ \nu=mc^2/h $ zugeordnet wird. Diese für das Teilchen charakterisierende Frequenz ist nach Ansicht von de Broglie nicht auf das Teilchenvolumen beschränkt, sondern ist in Form einer das Teilchen begleitenden Welle auch in einem großen Raumbereich präsent. De Broglie nennt diese Begleitwelle Phasenwelle, weil Teilchen und Welle über die Phase am Ort des Teilchen aneinander gekoppelt sind. Unter dieser Bedingung erfüllen sowohl Teilchen als auch Welle die Transformationsgesetze der speziellen Relativitätstheorie.

Der Welle-Teilchen-Dualismus, der damals nur für Photonen bekannt war, ist nach Meinung von de Broglie ein Wesensmerkmal nicht nur der Photonen, sondern auch der Materie. Auch einem klassischen Teilchen – z. B. einem Elektron – können somit Welleneigenschaften zugesprochen werden. Im Ruhesystem des Teilchens ist die Wellenlänge der Phasenwelle unendlich groß. Ist das Teilchen in Bewegung, ergibt sich bei Anwendung der Lorentz-Transformation eine Modulation der Welle mit der Wellenlänge

$ \lambda={h\over p} $ (Wellenlänge $ \lambda $ ist gleich dem planckschen Wirkungsquantum $ h $ durch Impuls $ p=mv $ des Teilchens), der so genannten De-Broglie-Wellenlänge. Diese Beziehung ist als De-Broglie-Gleichung bekannt.

Der Prüfungsausschuss der Pariser Sorbonne, zu dem auch die bekannten Physiker Jean-Baptiste Perrin und Paul Langevin gehörten, war sich unsicher, wie er auf diesen kühnen und experimentell nicht bestätigten Vorschlag reagieren sollte. De Broglie selbst äußerte in Bezug auf die Skepsis Paul Langevins, dieser sei « probablement un peu étonné par la nouveauté de mes idées » (vermutlich ein wenig erstaunt über die Neuheit meiner Ideen.)

Langevin bat de Broglie um ein zweites Exemplar seiner Arbeit und schickte es an Albert Einstein, der wiederum Max Born informierte. Einstein zeigte sich tief beeindruckt und erklärte später, er glaube, dass de Broglies Doktorarbeit den ersten schwachen Lichtstrahl auf dieses leidigste unter den physikalischen Rätseln werfe. Max Planck berichtete später, wie ungewöhnlich er de Broglies neue Gedanken zunächst empfand:

„Die Kühnheit dieser Idee war so groß – ich muss aufrichtig sagen, daß ich selber auch damals den Kopf schüttelte dazu, und ich erinnere mich sehr gut, daß Herr Lorentz mir damals sagte im vertraulichen Privatgespräch: ‚Diese jungen Leute nehmen es doch gar zu leicht, alte physikalische Begriffe beiseite zu setzen!‛ Es war damals die Rede von Broglie-Wellen, von der Heisenbergschen Unschärfe-Relation – das schien damals uns Älteren etwas sehr schwer Verständliches.“

Der Prüfungsausschuss akzeptierte schließlich de Broglies Dissertation. Die Versuche von Clinton Davisson und Lester Germer 1927 mit der Elektronenbeugungsröhre und von George Paget Thomson 1928 bestätigten den Wellencharakter der Elektronen auch experimentell.

Materiewellen

Auf der Grundlage seiner Erkenntnis, dass alle Teilchen auch Welleneigenschaften besitzen, arbeitete de Broglie nach seiner Promotion an der Verbesserung des Bohr-Sommerfeldschen Atommodells. Er ordnete jedem Materieteilchen eine so genannte Materiewelle zu, die sich auf den Bohrschen Bahnen ausbreitet. De Broglie zeigte auf diesem Weg die Beziehung zwischen der Bahnstabilität und dem Bahnumfang der Elektronen im Bohrschen Atommodell auf:

$ 2 \pi r = n \lambda \Leftrightarrow 2 \pi r = { n h \over p } $,

d. h. ein Elektron kann sich nur dann ohne Energieverlust um den Atomkern bewegen, wenn sein Bahnumfang ein ganzzahliges Vielfaches seiner Wellenlänge ist. 1926 machte sich de Broglie an die Formulierung einer Differentialgleichung, die das Verhalten der Elektronen beschrieb. Diese Ansätze lieferten wichtige Anregungen für Erwin Schrödinger, der noch im selben Jahr seine partielle Differentialgleichung (Schrödingergleichung) aufstellte. Diese konnte das Verhalten der Elektronen in den stationären Energiezuständen darstellen.

In weiteren Arbeiten widmete de Broglie sich der Quantenfeldtheorie der Elementarteilchen und Wellengleichungen für Teilchen mit höherem Spin.

Philosophische Herangehensweise

Zunächst versuchte Louis de Broglie, die Wellenmechanik der Teilchen deterministisch zu erklären, und somit sämtliche Vorgänge exakt berechenbar darzustellen. Nach dem fünften Solvay-Kongress 1927, auf dem er rege Diskussionen mit anderen berühmten Physikern der Zeit wie Albert Einstein, Niels Bohr, Max Planck u .a. führte, gab er den deterministischen Ansatz auf und näherte sich der Wahrscheinlichkeitsinterpretation. Erst 1951 näherte sich de Broglie durch die Arbeiten von David Bohm und Jean-Pierre Vigier wieder einer kausalen und konkreten Interpretation der Wellenmechanik. →De-Broglie-Bohm-Theorie

Durch de Broglies philosophische und problemgeschichtliche Aufsätze, die vor allem aus seiner Zeit am Institut Henri Poincaré in Paris stammen, wird deutlich, dass de Broglies Beschäftigung mit physikalischen Grundlagenproblemen oft auf seinem historischen Interesse gründete. So ging z. B. seine Idee der Materiewellen letztlich aus dem intensiven Studium der Geschichte der Lichttheorie hervor.

Ehrungen

  • 1929 Medaille Henri Poincaré
  • 1929 Nobelpreis für Physik für die Entdeckung der Materiewellen
  • 1932 Albert I von Monaco Preis
  • 1938 Max-Planck-Medaille
  • 1952 Kalinga Prize der UNESCO für seine Bemühungen, die moderne Physik dem Laien verständlich zu machen
  • 1955 Goldene Medaille des Centre national de la recherche scientifique (CNRS)
  • De Broglie war Mitglied der Académie des sciences und der Académie française sowie der Accademia Nazionale dei Lincei in Rom, seit 1934 Mitglied der Leopoldina, seit 1953 der Royal Society in London sowie seit 1958 der Akademie der Wissenschaften der UdSSR und der American Academy of Arts and Sciences.
  • Ehrendoktor der Universitäten in Warschau, Bukarest, Athen, Lausanne, Québec und Brüssel

Literatur

  • Wolfgang Schreier (Hrsg.): Biographien bedeutender Physiker. Eine Sammlung von Biographien. Verlag Volk und Wissen, Berlin 1988, ISBN 3-06-022505-2
  • Henning Sievers: Louis de Broglie und die Quantenmechanik. 3. Juli 1998, arxiv:physics/9807012v2 (Sehr ausführliche deutsche Biographie, die auch das Verhältnis zu Einstein beleuchtet).
  • Emilio Segrè: Die grossen Physiker und ihre Entdeckungen. Sonderausgabe, 2. Auflage. Piper, München / Zürich 1997, ISBN 3-492-03950-2.

Weblinks

 <Lang> Commons: Louis de Broglie – Sammlung von Bildern, Videos und Audiodateien

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.