Cordelia (Mond)

Cordelia (Mond)

Cordelia
Cordelia1 Mond.png
Cordelia, aufgenommen von Voyager 2
Vorläufige oder systematische Bezeichnung S/1986 U 7
Zentralkörper Uranus
Eigenschaften des Orbits
Große Halbachse 49.751,722 ± 0,149 km
Periapsis 49.738,787 km
Apoapsis 49.764,657 km
Exzentrizität 0,00026 ± 0,000096
Bahnneigung 0,08479 ± 0,031 (Äquatorebene)°
Umlaufzeit 0,33503384 ± 0,00000058 d
Mittlere Orbitalgeschwindigkeit 10,7991 km/s
Physikalische Eigenschaften
Albedo 0,08 ± 0.01
Scheinbare Helligkeit 23,62 ± 0,35 mag
Mittlerer Durchmesser 40,2 ± 6
(50 × 36 × 36) km
Masse ≈ 4,4960 · 1016 kg
Oberfläche ~ 5.500 km²
Mittlere Dichte ≈ 1,3 g/cm³
Fallbeschleunigung an der Oberfläche ≈ 0,0073 m/s²
Fluchtgeschwindigkeit ≈ 17,0 m/s
Oberflächentemperatur ≈ −184 bis −209 °C / 64–89 K
Entdeckung
Entdecker

Voyager 2
Richard John Terrile

Datum der Entdeckung 20. Januar 1986
Anmerkungen Physikalische Daten relativ ungenau.

Cordelia (auch Uranus VI) ist der innerste bekannte und einer der kleineren der 27 bekannten Monde des Planeten Uranus.

Entdeckung und Benennung

Cordelia wurde am 20. Januar 1986 zusammen mit Ophelia von dem Astronomen Richard John Terrile auf fotografischen Aufnahmen der Raumsonde Voyager 2 entdeckt. Die Entdeckung wurde am 27. Januar 1986 von der Internationalen Astronomischen Union (IAU) bekanntgegeben; der Mond erhielt zunächst die vorläufige Bezeichnung S/1986 U 7.

Wie auch Ophelia ging Cordelia in der Folgezeit verloren. Die Astronomen Richard French vom Wellesley College und Philip Nicholson von der Cornell University suchten nach wellenartigen Verzerrungen in der Form der Uranusringe, welche durch die Gravitationswirkung dieser Schäfermonde verursacht sein könnten. Die Wissenschaftler fanden ein wellenartiges Muster an einer Kante des Epsilonringes. Unter der Voraussetzung, dass sich dieses Wellengekräusel in Übereinstimmung mit den orbitalen Bewegungen von Cordelia und Ophelia befinden müsste, berechneten sie deren Standort. Die berechnete Position für Ophelia lag sehr nahe an der Stelle, an der Erich Karkoschka (Lunar and Planetary Laboratory, Tucson) Ophelia gefunden hatte. French und Nicholson lieferten Karkoschka anschließend eine Position für Cordelia. Und als Karkoschka im März 2000 die Hubble-Bilder kontrollierte, fand er Cordelia genau da, wo French es vorhergesagt hatte. Die beiden Monde waren wiedergefunden.

Cordelia (lateinisch für „das rechte Herz“) ist in William Shakespeares Tragödie König Lear des Königs jüngste Tochter, die ein edles Herz besitzt und ihren Vater selbstlos und aufrichtig liebt.

Alle Monde des Uranus sind nach Figuren von Shakespeare oder Alexander Pope benannt. Die ersten vier entdeckten Uranusmonde (Oberon, Titania, Ariel, Umbriel) wurden nach Vorschlägen von John Herschel, dem Sohn des Uranus-Entdeckers Wilhelm Herschel, benannt. Später wurde die Tradition der Namensgebung beibehalten.

Bahneigenschaften

Umlaufbahn

Voyager 2-Bild von Cordelia und Ophelia

Cordelia umkreist Uranus auf einer prograden, fast perfekt kreisförmigen Umlaufbahn mit einem mittleren Abstand von rund 49.752 km von dessen Zentrum, also 24.193 km über dessen Wolkenobergrenze. Dies bedeutet, dass sie der Uranusoberfläche näher ist als der Uranusmittelpunkt selbst. Die Bahnexzentrizität beträgt 0,00026, die Bahn ist 0,08479° gegenüber dem Äquator von Uranus geneigt.

Die Umlaufbahn des nächstäußeren Mondes Ophelia ist im Mittel 4012 km von Cordelias Orbit entfernt. Cordelia befindet sich inmitten zweier Uranusringe, des innen laufenden δ (Delta)-Ringes, der im Mittel rund 1452 km vom Cordelia-Orbit entfernt ist, und des äußeren λ (Lambda)-Staubringes in lediglich 271 km Entfernung.

Cordelia bewegt sich als innerer Schäfermond innerhalb des hellsten ε (Epsilon)-Ringes des Uranus, der 1397 km vom Cordelia-Orbit entfernt ist, und beeinflusst mit ihrer Gravitationswirkung dessen Ringpartikel. Die innere Umrandung des Rings befindet sich zu Cordelia in einer 24:25-Bahnresonanz, der äußere Rand wiederum besitzt eine Resonanz von 14:13 zum äußeren Schäfermond Ophelia. Die Massen der beiden Monde müssen mindestens das dreifache der Masse des Rings betragen, damit dieser wirksam in seiner Begrenzung gehalten werden kann. Die Masse des ε-Rings wird auf etwa 1016 kg geschätzt. Zudem besitzt die scharfe Außenkante des δ-Rings eine 23:22 Resonanz zu Cordelia.

Cordelia umläuft Uranus in 8 Stunden, 2 Minuten und 26,92 Sekunden. Da dies schneller ist als die Rotation des Uranus, geht Cordelia vom Uranus aus gesehen im Westen auf und im Osten unter.

Sie bewegt sich innerhalb eines kritischen Abstandes, nahe der Roche-Grenze, in einer absinkenden Bahn um den Planeten und wird irgendwann infolge von Gezeitenkräften zu einem Ring auseinandergerissen werden oder in Uranus' Atmosphäre stürzen beziehungsweise verglühen.

Rotation

Es wird vermutet, dass Cordelia synchron rotiert und ihre Achse eine Neigung von 0° aufweist.

Physikalische Eigenschaften

Cordelia hat einen mittleren Durchmesser von 40,2 km. Auf den Aufnahmen der Voyager 2-Sonde erschien Cordelia als längliches Objekt mit Abmessungen von 50 × 36 × 36 km, wobei die Längsachse auf Uranus ausgerichtet ist.

Ihre mittlere Dichte ist mit 1,3 g/cm³ deutlich geringer als die Dichte der Erde und weist darauf hin, dass der Mond überwiegend aus Wassereis zusammengesetzt ist.
Sie weist eine sehr geringe Albedo von 0,08 auf, das heißt 8 % des eingestrahlten Sonnenlichts werden von der Oberfläche reflektiert. Sie ist damit ein sehr dunkler Himmelskörper.
An ihrer Oberfläche beträgt die Schwerebeschleunigung 0,0073 m/s², dies entspricht weniger als 1 ‰ der irdischen.
Die mittlere Oberflächentemperatur von Cordelia wird auf zwischen −184 und −209 °C (89–64 K) geschätzt.

Ansonsten ist nicht viel über diesen Mond bekannt, da Aufnahmen der Sonde in großer Entfernung entstanden und daher eine geringe Auflösung haben.

Erforschung

Seit dem Vorbeiflug der Raumsonde Voyager 2 wurde das Uranussystem von erdbasierten Beobachtungen wie auch dem Hubble-Weltraumteleskop intensiv studiert. Dabei konnten die Bahnparameter von Cordelia präzisiert werden.

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.