Bahnresonanz

Bahnresonanz

In der Himmelsmechanik liegt eine Bahnresonanz (oder kurz Resonanz) vor, wenn zwei oder mehrere Himmelskörper periodisch wiederkehrenden gravitativen Einflüssen unterliegen. Ursachen von Bahnresonanzen sind die Umlaufzeiten der beteiligten Himmelskörper, deren Verhältnis zueinander durch niedrige natürliche Zahlen beschrieben werden kann, beispielsweise durch 2:1 oder 3:2.

Zwischen den Umlaufzeiten einiger unserer Planeten herrschen harmonikale Verhältnisse, beschrieben von Johannes Kepler in seiner „Harmonice mundi“.

Auswirkungen

Resonanzen können sowohl eine störende als auch eine stabilisierende Wirkung auf die Bahnen der Himmelskörper haben. Dies ist abhängig von der geometrischen Konstellation der beteiligten Himmelskörper. Bahnveränderungen durch periodische Störungen (siehe Resonanz), die stets an derselben Bahnposition ausgeübt werden, summieren sich im Falle einer instabilen, störenden Resonanz oder kompensieren sich gegenseitig im Fall einer stabilen Resonanz.

Störende Resonanzen

Im Falle störender Resonanzen führen die periodisch wiederkehrenden Störungen über längere Zeiträume zu dramatischen Änderungen der Bahnform. Häufigstes Resultat ist das Anwachsen der Exzentrizität, bis der Himmelskörper auf Kollisionskurs mit einem anderen Objekt gerät oder bei einer nahen Passage aus dem System herausgeschleudert wird.

Beispiele für störende Resonanzen sind die durch die Saturnmonde bedingten Teilungen der Saturnringe und die Kirkwoodlücken im Asteroidengürtel. Letzterer gilt als der wahrscheinlichste Herkunftsort der erdnahen Asteroiden.

Stabilisierende Resonanzen

Bei stabilisierenden Resonanzen verteilen sich die Orte der Bahnstörungen regelmäßig auf der Bahn des gestörten Objekts, sodass sich ihre Wirkungen einander aufheben.

Beispiele

  • Der Zwergplanet Pluto und zahlreiche kleinere Objekte im Kuipergürtel, die als Plutinos bezeichnet werden, befinden sich in einer 3:2-Resonanz mit Neptun, d. h. während dreier Neptunumläufe umrunden sie die Sonne zweimal. Weiter außerhalb befinden sich weitere resonante Kuipergürtelobjekte, die in 2:1-Resonanz zur Neptunbahn stehen. Es existieren auch Objekte mit anderen Resonanzen, wie zum Beispiel mit 5:2 und 3:1.
  • Eine Sonderform der Bahnresonanz mit dem Verhältnis 1:1 bilden die koorbitalen Objekte. Das bekannteste Beispiel dafür sind die so genannten Trojaner. Sie befinden sich in einem Lagrange-Punkt bezüglich der Sonne und eines Planeten (meistens Jupiter).
  • Eine Vielzahl kleinerer Asteroidengruppen außerhalb des Hauptgürtels zwischen Mars und Jupiter werden durch Resonanzen zur Jupiterbahn stabilisiert. Darunter die Hilda-Gruppe bei 3:2 und die Cybele-Gruppe bei 7:4.
  • Im extrasolaren Planetensystem um den Stern Ypsilon Andromedae A befindet sich der zweitinnerste Planet Ypsilon Andromedae d in einer 3:1-Resonanz mit dem äußersten Planeten Ypsilon Andromedae e.[1]

Weitere Typen

Laplace-Resonanzen der Umlauffrequenzen der drei inneren Galileischen Monde

Säkulare Resonanz

Eine säkulare Resonanz liegt vor, wenn die Bewegung des Perihels oder die des Knotens zweier oder mehrerer Himmelskörper miteinander synchronisiert ist. Die Präzessionsfrequenz kleinerer Körper passt sich in diesem Fall der des störenden massereichen Körpers an.

Kozai-Mechanismus

Beim Kozai-Mechanismus handelt es sich um eine periodische und synchrone Änderung der Exzentrizität und Bahnneigung eines Himmelskörpers infolge von Resonanzeffekten.

Laplace-Resonanz

Bei einer Laplace-Resonanz stehen die Umlaufzeiten dreier oder mehrerer Himmelskörper in einem niedrigen ganzzahligen Verhältnis zueinander. Die beiden einzigen bekannten Beispiele sind die drei inneren Galileischen Monde des Jupiter (Io, Europa, Ganymed) und die drei äußeren Planeten von Gliese 876 (Gliese 876 c, Gliese 876 b, Gliese 876 e). Die Umlauffrequenzen der drei Jupitermonde stehen in einer Resonanz von 4:2:1 – vier Io-Umläufe auf zwei Europa-Umläufe und einen Ganymed-Umlauf. In vergleichbarer Weise entfallen vier Umläufe von Gliese 876 c auf zwei von Gliese 876 b und einen von Gliese 876 e.

Siehe auch

Literatur

  • Joachim Krautter et al.: Meyers Handbuch Weltall, Meyers Lexikonverlag, 7. Auflage 1994, ISBN 3-411-07757-3, S. 144

Einzelnachweise

  1. Curiel et al. A fourth planet orbiting υ Andromedae in Astronomy & Astrophysics Ausgabe 525, 2011

Diese Artikel könnten dir auch gefallen



Die letzten News


25.01.2021
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.