Charon (Mond)

Charon (Mond)

Charon
Charon-Neutral-Bright-Release.jpg
Charon, aufgenommen von der Raumsonde New Horizons am 14. Juli 2015
Vorläufige oder systematische Bezeichnung S/1978 P 1
Pluto I
Zentralkörper Pluto
Eigenschaften des Orbits
Große Halbachse (19.571,4 ± 4,0) km
Periapsis 19.570,0 km
Apoapsis 19.572,8 km
Exzentrizität 0,000000 ± 0,000070
Bahnneigung 0,001° (Äquatorebene)

119,591 ± 0,014° (Bahnebene)
112,783 ± 0,014° (Ekliptik

Umlaufzeit 6,3872304 ± 0,0000011 d
Mittlere Orbitalgeschwindigkeit 0,223 km/s
Physikalische Eigenschaften
Albedo 0,372 ± 0,02
Scheinbare Helligkeit 17,26 mag
Mittlerer Durchmesser 1.208,0 ± 3,0 km
Masse 1,586 ± 0,015 · 1021 kg
Oberfläche 4.400.000 km²
Mittlere Dichte 1,65 ± 0,07 g/cm³
Siderische Rotation 6,3872304 ± 0,0000011 Tage
Achsneigung 0,000°
Fallbeschleunigung an der Oberfläche 0,28 ± 0,01 m/s²
Fluchtgeschwindigkeit 604 m/s
Oberflächentemperatur −210 °C / 63 K
Entdeckung
Entdecker

J. W. Christy

Datum der Entdeckung 22. Juni 1978
Anmerkungen Größter Plutosatellit; plutosynchron gebundene Rotation
Pluto Charon Moon Earth Comparison.png
Größenvergleich zwischen den Paaren ErdeMond und Pluto–Charon (unten rechts) im gleichen Maßstab (Fotomontage).

Charon ([ˈçaːrɔn],[1][2][3] auch [ˈkaːrɔn][4][5]) ist der innerste und größte der fünf bekannten Monde des Zwergplaneten Pluto. Entdeckt wurde er im Jahr 1978. Sein mittlerer Durchmesser beträgt 1208 Kilometer, was etwas mehr als die Hälfte des Durchmessers von Pluto ausmacht. Verglichen mit anderen Monden im Sonnensystem ist Charon damit im Verhältnis zu seinem Hauptkörper ungewöhnlich groß und der gemeinsame Schwerpunkt liegt weit außerhalb von Pluto.

Im August 2006 diskutierte die Internationale Astronomische Union (IAU), ob Charon und Pluto gemeinsam als Doppelplanet den Status eines Zwergplaneten (Plutoids) erhalten sollen. Beschlossen wurde jedoch nur über Pluto; Charon ist vorerst im Status Satellit verblieben.[6]

Entdeckung

Entdeckungsfoto (Negativ) von Charon

Charon wurde am 22. Juni 1978 von dem Astronomen James Walter Christy vom United States Naval Observatory in Washington, D.C. bei der Auswertung von fotografischen Platten entdeckt, die Monate zuvor vom 1,55-Meter-Kaj-Strand-Astrometric-Reflector angefertigt worden waren. Christy stellte fest, dass Pluto auf den Fotografien periodisch eine leichte Ausbeulung aufwies (siehe Bild). Dieses Phänomen, das auf einen Mond des Pluto hinwies, konnte später noch auf fotografischen Platten nachgewiesen werden, die bereits am 29. April 1965 belichtet worden waren. Die Periode der Ausbeulung entsprach der Rotationsperiode von Pluto, die durch dessen Lichtkurve bekannt war, und wies dadurch auf einen synchronen Orbit hin. Alle Zweifel wurden beseitigt, als Pluto und Charon zwischen 1985 und 1990 einander wiederholt bedeckten, was nur in zwei Abschnitten innerhalb der 248-jährigen Umlaufperiode von Pluto geschieht. Es war also ein glücklicher Zufall, dass dies so bald nach Charons Entdeckung stattfand. Die Entdeckung eines Plutomondes erlaubte es den Astronomen, Plutos Masse und Größe genauer zu bestimmen.

Benennung

Die Entdeckung wurde am 7. Juli 1978 bekanntgegeben; der neue Himmelskörper erhielt die vorläufige Bezeichnung S/1978 P 1.[7][8]

Am 3. Januar 1986 wurde der Mond von der IAU offiziell nach dem Fährmann Charon benannt,[9] der in der griechischen Mythologie die Verstorbenen über den Totenfluss in das Reich des Totengottes Hades (lateinisch Pluto) bringt. Die IAU bevorzugte damit den Namensvorschlag Christys, der damit auch auf die ersten vier Buchstaben des Namens seiner Ehefrau Charlene, von ihm Char genannt, anspielte. Der Name wird daher gelegentlich auch Scharon ausgesprochen.

Bei der Namensgebung stand auf Vorschlag von Christys Kollegen vom Naval Observatory auch noch Persephone zur Diskussion, die Gemahlin Plutos in der Mythologie.

Anders als der Erdmond oder Pluto verfügt Charon über kein offizielles astronomisches Symbol oder eines, das allgemein verwendet wird. Im Internet kursierende Charonsymbole (z. B. Jestu.png) sind Entwürfe von Privatpersonen.[10] Eine offizielle Anerkennung ist nicht absehbar, da astronomische Symbole in der modernen Astronomie nur noch eine untergeordnete Rolle spielen.

Bahneigenschaften

Bahnen von Pluto, Charon, Nix und Hydra um das Baryzentrum

Umlaufbahn

Pluto und Charon umkreisen einander in einer in Bezug auf das Sonnensystem retrograden, beinahe perfekt kreisförmigen Umlaufbahn in 17.536 km ± 4 km mittlerem Abstand (19.571,4 km Abstand der Zentren beider Körper, etwa 17 Pluto- bzw. 32,3 Charonradien) um den gemeinsamen Schwerpunkt, der sich wegen des relativ geringen Massenunterschiedes etwa 1200 km über der Oberfläche des Pluto (2360 km vom Zentrum entfernt) befindet. Damit sind Charon und Pluto physikalisch ein Doppelsystem. Dies ergibt einen mittleren Abstand beider Oberflächen von 17.812 km. Die Bahnexzentrizität beträgt höchstens 0,00007, die Bahn ist 0,001° gegenüber dem Äquator von Pluto geneigt. Gleich dem Plutoäquator ist Charons Bahnebene daher mit 119,591° retrograd gegenüber der Bahnebene des Zwergplaneten geneigt.

Charon und Pluto umrunden einander in 6 Tagen, 9 Stunden, 17 Minuten und 36,7 ± 0,1 Sekunden, was rund 14.186,63 Umläufen in einem Plutojahr (rund 248,09 Erdjahre) entspricht.

Rotation

Charon rotiert in ebenfalls 6 Tagen, 9 Stunden, 17 Minuten und 36,7 ± 0,1 Sekunden um die eigene Achse und im gleichen Zeitraum sowie mit demselben Drehsinn um das Baryzentrum. Er weist damit wie der Erdmond eine gebundene Rotation auf und zeigt seinem Hauptkörper immer dieselbe Seite. Im Unterschied zu Erde und Mond wurden die Rotationszeiten von Pluto und Charon durch Gezeitenkräfte beiderseits abgebremst und synchronisiert, daher wendet auch Pluto Charon immer dieselbe Seite zu. Dies ist der einzige bestätigte Fall einer doppelt gebundenen Rotation im Sonnensystem.

Physikalische Eigenschaften

Charon hat einen mittleren Durchmesser von 1208 km ± 3,0 km (nach anderen Angaben 1207,2 km ± 2,8 km), der etwa 52,6 Prozent, also etwas mehr als der Hälfte des Zentralkörpers entspricht. Charons Masse beträgt etwa 12,2 Prozent der Masse von Pluto. Er ist der zwölftgrößte Mond im Sonnensystem.

Innerer Aufbau

Zwei Modelle zum inneren Aufbau von Charon

Charons mittlere Dichte wurde mit 1,65 g/cm³ bestimmt.[11][12] Er sollte damit zu etwa 55–60 % aus Gestein und zu 40–45 % aus Wassereis bestehen; ein augenfälliger Unterschied zu Pluto, dessen Gesteinsanteil bei etwa 70 % liegt.[13][14]

Zum inneren Aufbau von Charon gibt es zwei Theorien: Entweder ist Charon ein differenziert aufgebauter Körper mit einem Gesteinskern und Eismantel, oder er besteht aus einer einheitlichen Eis-Gestein-Mischung. Durch die Entdeckung von Hinweisen auf Kryovulkanismus wird die erste Theorie favorisiert. Damit gilt Charon als Eismond.

Der relativ hohe Anteil an felsigem Material und das Fehlen einer merklichen Atmosphäre stützen die Annahme, nach der dieser verhältnismäßig große Trabant analog der Entstehung des Erdmondes das Produkt der großen Kollision eines Vorgängers von Pluto mit einem anderen plutogroßen Körper des Kuipergürtels ist.

Helligkeit

Von der Erde aus betrachtet ist Charon mit einer Helligkeit von 16m sehr lichtschwach. Von Pluto aus betrachtet ist er auf Grund seiner Größe sehr hell und erreicht bei Voll-Charon etwa −10,6m. Das aschgraue Licht des Neu-Charons ist mit −4m heller als das des Erdmondes mit −2,8m. Pluto von Charon aus betrachtet erreicht bei Voll-Pluto mit −12,5m die Helligkeit unseres Vollmondes. Ursache ist die zur Größe geringe Entfernung zwischen Pluto und Charon. Die dadurch entstehenden Gezeitenkräfte sind knapp 20 mal so stark wie im Erde-Mond-System.

Oberfläche

Charons Oberfläche hat eine Größe von etwa 4.400.000 km2. Sie hat ein Rückstrahlvermögen von 37,2 %. Dies ist im Vergleich zu anderen Kuipergürtelobjekten ziemlich hell und entspricht annähernd der Albedo der Erde. Anders als Plutos Oberfläche, die von gefrorenem Stickstoff und Methan überzogen ist, scheint Charons Oberfläche aus dem weniger flüchtigen Wassereis zu bestehen. Außerdem erscheint Charon im Unterschied zum inhomogen rotbräunlich gefärbten Pluto in einem einheitlich neutralen Grau.

Die Oberflächentemperatur konnte am 11. Juli 2005 bei einer Sternbedeckung durch Charon zu −220 °C bestimmt werden. Das entspricht dem in dieser Entfernung zu erwartenden Strahlungsgleichgewicht. Der Druck einer eventuellen, äußerst dünnen Atmosphäre kann höchstens 0,011 Pa betragen.[15][16]

Das Gemini-Observatorium gab am 17. Juli 2007 bekannt, dass es auf Charon Kryovulkane entdeckt habe, die eine Mischung aus kristallinem Wassereis und Ammoniumhydroxid an die Oberfläche bringen, die sich dann global ablagert. Dass das Eis noch immer in kristalliner Form vorliegt, weist auf kürzliche Ablagerungen hin, da die Ultraviolettstrahlung der Sonne und die kosmische Strahlung das Eis innerhalb von etwa 30.000 Jahren in ein amorphes Stadium verwittert haben müsste.[17]

Auffällig ist das fast völlige Fehlen von Einschlagkratern auf den (bislang veröffentlichten) Bildern der Raumsonde New Horizons. Dies spricht für eine sehr junge Oberfläche, die noch bis in jüngste Zeit durch geologische oder andere Prozesse umgeformt wurde, wodurch die üblicherweise vorhandenen Einschlagkrater überdeckt oder abgetragen wurden.

Besonders markant ist Charons rötliche Polarregion. Sie bekam den informellen Namen Mordor Macula, nach dem Land Mordor in J. R. R. Tolkiens Roman Der Herr der Ringe. Möglicherweise schlägt sich dort während der über 100-jährigen Polarnacht aus der Plutoatmosphäre entwichenes Methan nieder, das, bevor es wieder verdampfen kann, bis in den Sommer durch energiereiche Strahlung stufenweise in beständigere, rotbraune Tholine umgewandelt wird. Entsprechend dieser Erklärung deuten Analysen des von Charons Polarnachtseite reflektierten Plutolichts darauf hin, dass es auch in der Südpolregion eine dunkle Verfärbung gibt.[18][19]

Für die Nomenklatur der Formationen auf Charon hat die IAU die Herkunftsbereiche von möglichen Namensgebern auf Ziele und Meilensteine fiktiver Erkundungen sowie fiktive und mythologische Fahrzeuge, Reisende und Forscher festgelegt.[20][21]

Erforschung

Die ersten Bilder, die Pluto und Charon als zwei separate Körper zeigten, gelangen in den 1990er Jahren mit dem Hubble-Weltraumteleskop. Später wurde dies durch den Einsatz von adaptiver Optik auch mit erdgebundenen Teleskopen möglich.

Etappen der Passage des Plutosystems durch New Horizons

Die am 19. Januar 2006 gestartete Raumsonde New Horizons flog am 14. Juli 2015 in 12.500 km Entfernung an Pluto vorbei und passierte einige Minuten später ihren zum ferneren Charon nächstgelegenen Bahnpunkt bei einem geringsten Abstand von 28.800 km. Ihre weitere Flugbahn führte die Sonde noch durch die Schatten der beiden Himmelskörper, sodass mit ihr sowohl eine Verfinsterung durch Pluto als auch eine durch Charon beobachtet werden konnte.

Siehe auch

Literatur

  • Alan Stern, Jacqueline Mitton: Pluto and Charon. Ice Worlds on the Ragged Edge of the Solar Syste. 2nd edition, revised and updated. Wiley-VCH, Weinheim 2005, ISBN 3-527-40556-9.

Weblinks

Künstlerische Darstellung einiger großer transneptunischer ObjekteTransneptunisches Objekt(136199) Eris(136199) ErisDysnomia (Mond)Dysnomia (Mond)PlutoPlutoCharon (Mond)Charon (Mond)Styx (Mond)Nix (Mond)Kerberos (Mond)Hydra (Mond)(136472) MakemakeNamaka (Mond)Hiʻiaka (Mond)(136108) Haumea(90377) Sedna(225088) 2007 OR₁₀(50000) Quaoar(50000) QuaoarWeywot (Mond)(90482) Orcus(90482) OrcusVanth (Mond)Erde
Vergleich von Phantasiezeichnungen einiger großer transneptunischen Objekte mit der Erde (Bildüberschrift Stand Juni 2015). Um zum entsprechenden Artikel zu kommen, auf das Objekt klicken (große Darstellung).
 <Lang> Commons: Charon – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. [ˈçaːrɔn] in Helmut Boor (Hrsg.): Theodor Siebs – Deutsche Hochsprache (18. Auflage), de Gruyter, Berlin 1966, S. 263.
  2. [ˈçaːrɔn] in Max Mangold (Bearb.): Duden. Das Aussprachewörterbuch (6. Auflage), Dudenverlag, Mannheim 2005, ISBN 3-411-04066-1, S. 238.
  3. [çˈaːʁɔn] in Eva-Maria Krech, Eberhard Stock, Ursula Hirschfeld, Lutz-Christian Anders: Deutsches Aussprachewörterbuch, de Gruyter, Berlin 2009, ISBN 978-3-11-018202-6, S. 408.
  4. „Kahron“ in Carl Venator: Die in unserer Sprache gebräuchlichen Fremdwörter (3. Auflage), L. Pabst, Darmstadt 1838, S. 79.
  5. „Karon“ in Pierer’s Universal-Lexikon Band 3, Altenburg 1857, S. 874.
  6. IAU.org: Pluto and the Developing Landscape of Our Solar System. Zitat: For now, Charon is considered just to be Pluto's satellite. The idea that Charon might qualify to be called a dwarf planet in its own right may be considered later.
  7. James W. Christy, Robert S. Harrington: The satellite of Pluto. In: Astronomical Journal. Bd. 83, 1978, S. 1005–1008, doi:10.1086/112284, online
  8. IAUC 3241: 1978 P 1 7. Juli 1978 (Entdeckung).
  9. IAUC 4157: Satellites of Saturn and Pluto 3. Januar 1986 (Benennung).
  10. Beispiel einer privaten Internetseite mit einer Kollektion von Symbolentwürfen: Denis Moskowitz: Astronomical/Astrological symbols for other planets' moons. 13. April 2014, abgerufen am 19. Mai 2015 (english).
  11. Marc W. Buie, William M. Grundy: Orbits and photometry of pluto’s satellites: charon, S/2005 P1, and S/2005 P2.
  12. The Pluto system: Initial results from its exploration by New Horizons. Table 1, arxiv:1510.07704v1
  13. M. J. Person, J. L. Elliot, A. A. S. Gulbis, J. M. Pasachoff, B. A. Babcock, S. P. Souza, J. Gangestad: Charon’s Radius and Density from the Combined Data Sets of the 2005 July 11 Occultation. In: Astronomical Journal. 03/2006; 132(4), S. 1575–1580, ISSN 1538-3881, doi:10.1086/507330, arxiv.org.
  14. Hans-Arthur Marsiske: Der Schatten des Charon. In: Telepolis 8. Januar 2006 (Größe von Charon auf wenige Kilometer genau).
  15. Bruno Sicardy u. a.: Charon’s size and an upper limit on its atmosphere from a stellar occultation. In: Nature. Bd. 439, 2006, S. 52–54, doi:10.1038/nature04351.
  16. Measuring the Size of a Small, Frost World In: ESO Pressemitteilung 4. Januar 2006 (englisch).
  17. Charon: An Ice Machine in the Ultimate Deep Freeze In: Gemini-Observatorium. 12. Juli 2007 (Kryovulkanismus, englisch).
  18. Rainer Kayser: Warum Charon ein rotes Käppchen trägt.
  19. W. M. Grundy et al., The formation of Charon’s red poles from seasonally cold-trapped volatiles, Nature 2016 doi:10.1038/nature19340
  20. Namen auf Pluto-Mond. Vom Spock-Krater nach Mordor und zurück. In: Spiegel Online, 29. Juli 2015
  21. IAU: Naming of Astronomical Objects. Zuletzt abgerufen am 15. Oktober 2016

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.
28.01.2021
KI für die Raumfahrt
Ob der eigenwillige HAL 9000 bei Odyssee im Weltraum, der dezent agierende „Computer“ der Enterprise oder die nüchtern-sarkastischen TARS und CASE in Interstellar – in der Science-Fiction wird die Exploration des Weltraums seit jeher von Künstlicher Intelligenz begleitet.