Parität (Physik)

Parität (Physik)

Die Parität bezeichnet in der Physik eine Symmetrieeigenschaft, die ein physikalisches System gegenüber einer räumlichen Spiegelung haben kann.

Beschreibung

Der Parität liegt eine Raumspiegelung zugrunde, die nach Auswahl eines Punktes als Koordinatenursprung durch einen Vorzeichenwechsel in jeder der drei Ortskoordinaten dargestellt wird. Dabei bleibt die Zeit $ t $ unverändert:

$ (t, x, y, z)\mapsto (+t, -x, -y, -z)\ . $

Jeder Ort $ \vec r $ geht dabei in den Ort $ -\vec r $ über, der, anschaulich gesprochen, „jenseits des Ursprungs genau gegenüber“ liegt. Für die räumliche Vorstellung dieser Transformation der Koordinaten ist oft hilfreich, dass sie aus einer Spiegelung an einem ebenen Spiegel und einer anschließenden 180°-Drehung um die zum Spiegel senkrechte Richtung zusammengesetzt werden kann.

Eine physikalische Fragestellung ist nun, wie sich ein physikalisches System in einem bestimmten Zustand verhält, wenn es räumlich gespiegelt wird. Für die Antwort spielt es keine Rolle, ob nur in der Beschreibung des Systems die obige Koordinatentransformation vorgenommen wird oder ob stattdessen ein zweites System als gespiegelte Kopie des ersten aufgebaut wird. Behält eine physikalische Größe des Systems dabei ihren Wert, dann ist das System hinsichtlich dieser Größe spiegelsymmetrisch, es hat positive Parität. Wechselt eine physikalische Größe bei gleichbleibendem Betrag nur ihr Vorzeichen, dann hat das System hinsichtlich dieser Größe negative Parität. (Bezüglich des Betrags hat es dann also positive Parität.) In allen anderen Fällen liegt keine bestimmte Parität vor. Solche Systeme erscheinen „unsymmetrisch“, jedenfalls in Bezug zum gerade benutzten Koordinatenursprung.

Beispiele

Eine am Ursprung befindliche elektrische Punktladung $ Q $ hat hinsichtlich ihres Potentials $ V(\vec r) = \tfrac{Q}{4\pi \varepsilon_0 |\vec r|} $ positive Parität, denn $ V(\vec r) = V(-\vec r) $. Hinsichtlich ihres elektrischen Feldes aber hat sie negative Parität, denn $ \vec E (-\vec r) = - \vec E (\vec r) $. Bezüglich eines anders gewählten Koordinatenursprungs liegt gar keine Parität vor.

Paritätserhaltung

Bei allen Prozessen, die durch Gravitation oder Elektromagnetismus bewirkt werden, bleibt die Parität des Anfangszustands, wenn er eine hat, erhalten. Diese Paritätserhaltung gilt demnach in der ganzen Klassischen Physik. Anschaulich bedeutet dies z. B., dass aus einem symmetrischen Zustand nicht ein unsymmetrischer hervorgehen kann. Diese Aussage mag manchmal falsch erscheinen, z. B. wenn nach der Explosion eines vollständig symmetrisch aufgebauten Feuerwerkskörpers die entgegensetzt auseinander fliegenden Brocken verschiedene Größe haben. Oder wenn sich ein glühender Eisenstab beim Abkühlen in unsymmetrischer Weise spontan magnetisiert. Nach der klassischen Physik muss die Ursache solcher Symmetriebrechung darin liegen, dass schon der Anfangszustand nicht völlig symmetrisch war, was wegen der Kleinheit der Störung aber unerkannt geblieben ist. Alles andere widerspricht der unmittelbaren Anschauung, denn ein mechanischer Apparat, der in spiegelbildlichem Nachbau nicht genau so funktionieren würde wie das Original, liegt außerhalb unserer Vorstellungsmöglichkeiten. Zum Beispiel müsste man sich vorstellen können, was bei einer normalen Holzschraube zwischen dem Gewinde und dem Holz passiert, wenn sie die Parität verletzt, also beim Hineindrehen herauskommt. Die Anschauung befindet sich hingegen im Einklang mit allen praktischen Erfahrungen in der makroskopischen Welt, die vollkommen von den paritätserhaltenden Wechselwirkungen Schwerkraft und Elektromagnetismus bestimmt werden.

Ein anderes Kennzeichen der Paritätserhaltung ist, dass man durch alleiniges Beobachten eines physikalischen Vorgangs prinzipiell nicht entscheiden kann, ob man ihn direkt oder nach einer Spiegelung beobachtet. Denn geht ein System, sei es symmetrisch oder unsymmetrisch, von einem Anfangszustand nach den Gesetzen der klassischen Physik in einen anderen Zustand über, dann geht ein gespiegelter Anfangszustand des gespiegelt aufgebauten Systems in derselben Zeit in das Spiegelbild des Endzustands über. Die beiden Fälle sind nur dadurch zu unterscheiden, dass man im Beobachtungsvorgang das Vorhandensein oder die Abwesenheit einer Spiegelung nachweist.

Die theoretische Begründung beider Kennzeichen der Paritätserhaltung beruht darauf, dass die Bewegungsgleichungen für Gravitation und Elektromagnetismus unverändert bleiben, wenn man die oben angegebene Koordinatentransformation durchführt. Man sagt, diese Gleichungen selbst besitzen Spiegelsymmetrie, sie sind unter dieser Transformation kovariant.

Paritätsverletzung

Hauptartikel: Paritätsverletzung

Aufgrund aller praktischen Erfahrung und physikalischen Erkenntnis wurde eine Verletzung der Paritätserhaltung für ausgeschlossen gehalten, bis im Jahr 1956 eine bestimmte Beobachtung aus der Elementarteilchenphysik nicht mehr anders zu deuten war. Tsung-Dao Lee und Chen Ning Yang schlugen diesen Ausweg zur Lösung des „τ-θ-Puzzle“ (gesprochen „Tau-Theta-Puzzle“) beim Zerfall des Kaons vor[1]. Noch im selben Jahr konnte dies von Chien-Shiung Wu[2] und Leon Max Lederman[3] in zwei unabhängigen Experimenten bestätigt werden.

Die Ursache der Paritätsverletzung liegt in der schwachen Wechselwirkung, mit welcher z. B. die Beta-Radioaktivität und der Zerfall vieler kurzlebiger Elementarteilchen beschrieben wird. Die Formeln der theoretischen Formulierung der schwachen Wechselwirkung sind nicht invariant gegenüber der Paritätstransformation. Fermionische Teilchen wie zum Beispiel das Elektron besitzen eine Eigenschaft namens Chiralität mit zwei möglichen Ausprägungen, die als linkshändig und rechtshändig bezeichnet werden und durch Raumspiegelung wechselseitig ineinander übergehen. Das ist vergleichbar mit der Polarisation von Licht oder eben mit dem Unterschied von linker und rechter Hand. Ein Elektron befindet sich, wie in der Quantenphysik möglich, im Allgemeinen in einer Art von Überlagerungszustand von Links- und Rechtshändigkeit. Eine paritätserhaltende Wechselwirkung muss beide Chiralitäten gleich stark betreffen. Die schwache Wechselwirkung greift aber lediglich an der linkshändigen Komponente des Elektronenzustands an. Dadurch ist die schwache Wechselwirkung nicht symmetrisch unter der Paritätstransformation und verletzt die Paritätserhaltung.

Theoretische Beschreibung in der Quantenmechanik

Paritätsoperator und Eigenwerte

In der Quantenmechanik wird der Zustand eines physikalischen Systems bestehend aus einem Teilchen im einfachsten Fall durch eine Wellenfunktion beschrieben. Diese ist eine Funktion $ \psi\colon\R^3\to\C $. Das Verhalten solcher Wellenfunktionen unter der Paritätstransformation wird durch einen Operator $ \hat P $ beschrieben, Paritätstransformation oder Paritätsoperator genannt, welche jeder Wellenfunktion $ \psi $ die zugehörige Wellenfunktion $ \hat P\psi $ im gespiegelten Koordinatensystem zuordnet. Sie ist definiert durch die Gleichung

$ (\hat P\psi)(\vec r)=\psi(-\vec r) $ für jede Wellenfunktion $ \psi $ und jeden Ortsvektor $ \vec r $.

Für Dirac-Wellenfunktionen ist der Paritätsoperator nicht allein eine Raumspiegelung der Wellenfunktion. Es tritt eine Transformation im 4dimensionalen Dirac-Raum hinzu, die durch Multiplikation mit der Dirac-Matrix $ \gamma^0 $ bewirkt wird:[4][5]

$ (\hat P\psi)(\vec r)=\gamma^0\psi(-\vec r)\ . $

Der Paritätsoperator hat einfache mathematische Eigenschaften:

  • Linearität
  • Es handelt sich um eine Involution (Mathematik): Durch zweifache Anwendung erhält man wiederum die ursprüngliche Wellenfunktion, $ \hat P \hat P\psi=\psi $, somit ist $ \hat P $ invertierbar und $ {\hat P}^{-1}=\hat P $.
  • Der Operator erhält die Norm; da $ \hat P $ linear und invertierbar ist, ist $ \hat P $ ein unitärer Operator, wie bei den Symmetrietransformationen in der Quantenphysik üblich.
  • Aufgrund der Unitarität ist $ \hat P^{-1} $ gleich seinem Adjungierten $ \hat P^\dagger $, somit ist $ \hat P=\hat P^\dagger $ selbstadjungiert.

Als selbstadjungierter Operator hat $ \hat P $ nur reelle Eigenwerte und lässt sich als Observable auffassen. Zu dieser Observable existiert aber kein direktes klassisches Pendant, aus dem sie sich (etwa über ein Funktionalkalkül) ergibt. Da der Paritätsoperator unitär ist, haben all seine Eigenwerte Betrag $ 1 $. Somit besitzt $ \hat P $ höchstens die Eigenwerte $ +1 $ und $ -1 $, auch als Paritätsquantenzahl bezeichnet. Die Eigenfunktionen zum Eigenwert $ +1 $ erfüllen die Gleichung $ \psi(\vec r)=\psi(-\vec r) $ und gehören damit zu den geraden (auch: symmetrischen) Funktionen (wie zum Beispiel eine Glockenkurve). Zum Eigenwert $ -1 $ gehören ungerade (auch: schiefsymmetrische) Wellenfunktionen, denn es gilt $ \psi(\vec r)=-\psi(-\vec r) $. Jeder Zustand lässt sich eindeutig als Summe von einem Eigenzustand zum Eigenwert $ +1 $ und einem zum Eigenwert $ -1 $ darstellen, das heißt in einen geraden und einen ungeraden Teil zerlegen, wie leicht nachzurechnen ist und auch aus dem Spektralsatz folgt.

Für Mehrteilchensysteme wird der Paritätsoperator analog zunächst für den Raum eines jeden einzelnen Teilchens definiert und dann auf das Tensorprodukt der Räume fortgesetzt:

$ \hat P(\psi_1\otimes\ldots\otimes\psi_n)(\vec{r_1},\ldots,\vec{r_n}) = (\psi_1\otimes\ldots\otimes\psi_n)(-\vec{r_1},\ldots,-\vec{r_n}) $ (linear fortzusetzen auf den ganzen Produktraum)

Algebraisch lässt sich der Paritätsoperator auch durch das Transformationsverhalten der Komponenten des Ortsoperators $ \hat {\vec r} = (\hat x_1, \hat x_2, \hat x_3) $ charakterisieren:

$ \hat P \hat x_i \hat P^{-1}=\hat P \hat x_i \hat P=-\hat x_i $

Oder anders ausgedrückt:

$ \hat P \hat x_i=-\hat x_i \hat P $

Der Paritätsoperator antivertauscht also mit dem Ortsoperator:

$ \left\{\hat P ,\hat x_i\right\} = 0 $

Das Gleiche gilt auch für die Komponenten des Impulsoperators $ \hat {\vec p }=(\hat p_1, \hat p_2, \hat p_3) $

$ \left\{\hat P ,\hat p_i\right\} = 0 $.

Paritätserhaltung und Paritätsverletzung

Erhaltung der Parität ist gewährleistet, wenn der Hamilton-Operator $ \hat H $ mit dem Paritätsoperator vertauschbar ist: $ \left [ \hat P ,\hat H \right ] = \hat P \hat H -\hat H \hat P = 0 $. Als Folge bleibt ein einmal vorliegender Paritätseigenwert für alle Zeit erhalten. Des Weiteren existiert ein gemeinsames vollständiges System von Eigenzuständen zu $ \hat H $ und $ \hat P $, mit der Folge, dass, bis auf zufällige mögliche Ausnahmen im Fall von Energieentartung, alle Energieeigenzustände eine wohldefinierte Parität besitzen.

Aufgrund der beobachteten Paritätsverletzung muss der für die betreffenden Prozesse gültige Hamilton-Operator einen mit dem Paritätsoperator nicht vertauschbaren Term enthalten. Damit folgt, dass es Prozesse gibt, in denen die anfängliche Parität nicht erhalten bleibt, und dass die Energieeigenzustände genau genommen Überlagerungen von zwei Zuständen entgegengesetzter Parität sind. Da dieser paritätsverletzende Term nur in der schwachen Wechselwirkung vorkommt, sind die tatsächlich beobachtbaren Auswirkungen meistens geringfügig, wenn auch theoretisch bedeutsam.

Andere Dimensionen

Betrachtet man physikalische Theorien in anderen als drei Dimensionen, so ist zu beachten, dass bei geradzahliger Dimension des Raumes eine Umkehr aller Koordinaten nichts anderes als eine Drehung ist (die Determinante ist $ 1 $). Daher definiert man für allgemeine Dimensionszahl die Paritätstransformation als Umkehr einer Koordinate und verfährt ansonsten analog. Dabei hat man den praktischen Nachteil, dass es nicht möglich ist, bezugssystemsunabhängig eine feste solche Matrix als Paritätstransformation zu definieren.

Siehe auch

Einzelnachweise

  1. T. D. Lee, C. N. Yang: Question of Parity Conservation in Weak Interactions. In: Physical Review. 104, 1956, S. 254-258. doi:10.1103/PhysRev.104.254.
  2. C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson: Experimental Test of Parity Conservation in Beta Decay. In: Physical Review. 105, 1957, S. 1413-1415. doi:10.1103/PhysRev.105.1413.
  3. Richard L. Garwin, Leon M. Lederman, Marcel Weinrich: Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: the Magnetic Moment of the Free Muon. In: Physical Review. 105, 1957, S. 1413-1415. doi:10.1103/PhysRev.105.1415.
  4. Franz Schwabl: Quantenmechanik für Fortgeschrittene (QM II). Springer, 2005, ISBN 978-3-540-25904-6 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. M. E. Peskin, D. V. Schroeder: An Introduction to Quantum Field Theory. Addison-Wesley, 1995, ISBN 978-0-201-50397-5, S. 65.

Literatur

  • Theo Mayer-Kuckuk: Der gebrochene Spiegel: Symmetrie. Symmetriebrechung und Ordnung in der Natur. Birkhäuser, Basel 1989.
  • Jörn Bleck-Neuhaus: Elementare Teilchen. Von den Atomen über das Standard-Modell bis zum Higgs-Boson (Kap. 12.2). 2. Auflage. Springer, Heidelberg 2013, ISBN 978-3-642-32578-6.

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.