Chiralität (Physik)

Chiralität (Physik)

Die Chiralität (Händigkeit, Kunstwort, abgeleitet von griechisch χειρ~, ch[e]ir~ - hand~), bezeichnet in der Physik ein abstraktes Konzept im Rahmen der relativistischen Quantenmechanik und der Quantenfeldtheorie. Im Gegensatz zur Chiralität in der Chemie existiert keine konkrete bildliche Visualisierung der Chiralität physikalischer Größen in Form einer Spiegelung am ebenen Spiegel; stattdessen beschreibt sie die Zerlegung von Dirac-Spinoren in orthogonale Zustände, die unter Paritätsoperationen ineinander übergehen. Die Chiralität ist eine entscheidende Größe im Rahmen der schwachen Wechselwirkung, da W-Bosonen nur an Teilchen mit negativer Chiralität und Antiteilchen mit positiver Chiralität koppeln.

Von der Chiralität zu unterscheiden ist das Konzept der Helizität.

Definition

Die fünfte Gamma-Matrix $ \gamma^5 = \mathrm i \gamma^0 \gamma^1 \gamma^2 \gamma^3 $ heißt Chiralitätsoperator; er ist hermitesch und selbstinvers. Seine Eigenwerte sind daher $ \pm 1 $. Den zum Eigenwert +1 gehörigen Eigenzustand nennt man den Zustand positiver/rechtshändiger Chiralität, den zum Eigenwert -1 gehörigen Zustand nennt man den Zustand negativer/linkshändiger Chiralität.

Masselose Fermionen

Aus der Dirac-Gleichung lässt sich im Grenzfall masseloser Fermionen wie Neutrinos[1] die Weyl-Gleichung $ \mathrm i \gamma^\mu \partial_\mu \psi= 0 $ erhalten. Im Rahmen der Weyl-Gleichung bietet es sich an, die Dirac-Matrizen nicht in Dirac-, sondern in Weyl-Darstellung zu notieren, sodass nur Blockmatrizen auf der Nichtdiagonalen auftreten. Durch das Fehlen des Masseterms entkoppeln somit die vier Komponenten der Dirac-Spinoren zu zwei unabhängigen Zweierspinoren

$ \partial_0 \begin{pmatrix} \psi_L\\ \psi_R \end{pmatrix} = - \mathrm i \vec \sigma \cdot \vec \nabla \begin{pmatrix} I_2 & 0 \\ 0& - I_2 \end{pmatrix} \begin{pmatrix} \psi_L\\ \psi_R \end{pmatrix} $.

Der Chiralitätsoperator kommutiert mit dem Weyl-Hamiltonoperator, sodass ein Satz gemeinsamer Energie- und Chiralitäts-Eigenzustände gefunden werden kann. Aufgrund der Diagonalität des Chiralitätsoperators in Weyl-Darstellung

$ \gamma^5 = \begin{pmatrix} - I_2 & 0 \\ 0 & I_2 \end{pmatrix} $,

folgt direkt, dass der obere Zweierspinor $ \psi_\text{L} $ als linkshändiger und der untere Spinor $ \psi_\text{R} $ als rechtshändiger Anteil gedeutet werden kann. Da Neutrinos nur schwach wechselwirken, sind rechtshändige Neutrinos bzw. linkshändige Antineutrinos sogenannte sterile Teilchen. Im Rahmen des Standardmodells sind daher alle Neutrinos negativer Chiralität und Antineutrinos positiver Chiralität.

Massebehaftete Fermionen

Da der Dirac-Hamiltonoperator einen Masseterm besitzt, kommutiert er nicht mit dem Chiralitätsoperator; es lassen sich daher keine gemeinsamen Eigenzustände konstruieren. Insbesondere folgt daraus auch, dass die Chiralität eines massiven Objektes keine Erhaltungsgröße darstellt, da der Chiralitätsoperator auch nicht mit dem Zeitentwicklungsoperator als Exponential des Hamiltonoperators kommutiert.

Aus der Eigenschaft des Chiralitätsoperators bzw. der fünften Gamma-Matrix, ihr Selbstinverses zu sein, folgt jedoch, dass die Operatoren $ P_\text{R} = \frac{1 + \gamma^5}{2} $ und $ P_\text{L} = \frac{1 - \gamma^5}{2} $ einen vollständigen Satz von Projektionsoperatoren bilden. Sie projizieren die Anteile positiver bzw. negativer Chiralität aus dem Dirac-Spinor hinaus: $ \gamma^5 P_\text{R/L} \psi \equiv \gamma^5 \psi_\text{R/L} = \pm \psi_\text{R/L} $. Jeder Dirac-Spinor kann auf diese Weise in einen Anteil rechts- beziehungsweise linkshändiger Chiralität zerlegt werden.

Chiralität und schwache Wechselwirkung

In der schwachen Wechselwirkung spielt das Konzept der Chiralität eine entscheidende Rolle. Im Rahmen der historischen V-A-Theorie projizieren die geladenen Ströme der schwachen Wechselwirkung nur den linkshändigen Anteil der Fermionen heraus, sodass nur dieser an der Wechselwirkung teilhat.

In der Glashow-Salam-Weinberg-Theorie der elektroschwachen Vereinigung werden die linkshändigen Anteile einer Teilchengeneration zu Dubletts unter dem sogenannten schwachen Isospin zusammengefasst (z. B. $ (\nu_e, e)_L $ bzw. $ (u, d)_L $), während die rechtshändigen Anteile als Singuletts betrachtet werden ($ e_R, u_R, d_R $). Dadurch wirkt die kovariante Ableitung unterschiedlich auf die links- bzw. rechtshändigen Komponenten, sodass die geladenen schwachen Ströme in Form der W-Bosonen nur auf die linkshändigen Anteile wirken, der neutrale schwache Strom in Form des Z-Bosons an rechts- und linkshändige Anteile unterschiedlich stark koppelt und der elektromagnetische Strom in Form des Photons rechts- und linkshändige Anteile nicht unterscheidet.

Zusammenhang mit anderen Konzepten

Helizität

Hauptartikel: Helizität

Der Helizitätsoperator betrachtet die Projektion des Spins in Bewegungsrichtung eines Teilchens und ist daher im Gegensatz zum Chiralitätsoperator nicht lorentzinvariant. Im Gegensatz zum Chiralitätsoperator kommutiert der Helizitätsoperator jedoch mit dem Dirac-Hamiltonoperator, sodass die Helizität eine Erhaltungsgröße darstellt.

Im Falle masseloser Fermionen stimmen Helizität und Chiralität bis auf einen (Spin-) Faktor überein.

CP-Invarianz

Die Chiralität von Teilchen ist aufgrund der Tatsache, dass der Chiralitätsoperator mit den Gamma-Matrizen antikommutiert, nicht invariant unter Paritätsoperationen $ \mathcal P $:

$ \mathcal P \psi_\text{R/L}(x) = \gamma^0 \frac{1\pm \gamma^5}{2} \psi(\mathcal P x) = \frac{1 \mp \gamma^5}{2} \gamma^0\psi(\mathcal P x) = (\mathcal P \psi(x))_\text{L/R} $

Ebenso ändert die Ladungskonjugation (Charge conjugation) $ \mathcal C $ die Chiralität, da der Chiralitätsoperator zudem gleich seines komplex Konjugierten ist:

$ \mathcal C \psi_\text{R/L}(x) = \mathrm i \gamma^2 \frac{1\pm \gamma^{5^*}}{2} \psi^*(x) = \frac{1\mp\gamma^{5}}{2} \mathrm i \gamma^2 \psi^*(x) = (\mathcal C \psi(x))_\text{L/R} $

Da somit Paritätsoperation und Ladungskonjugation gleichermaßen die Chiralität umkehren, bleibt die Chiralität unter einer Nacheinanderausführung von beiden Operationen erhalten. Diesen Fakt bezeichnet man als CP-Invarianz.

Einzelnachweise, Anmerkungen

  1. Im Rahmen des Standardmodells in ursprünglicher Fassung sind Neutrinos masselos. Experimente zur Neutrinooszillation haben gezeigt, dass sie eine nichtverschwindende Masse besitzen; die Beschreibung von Neutrinos als massive Objekte bedarf jedoch weiterführender physikalischer Modelle.

Siehe auch

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.