Anderson-Lokalisierung

Anderson-Lokalisierung

Als Anderson-Lokalisierung wird die Unterdrückung der Diffusion in ungeordneten Umgebungen bezeichnet, falls der Grad der Unordnung (Konzentration der Störstellen) eine bestimmte Schwelle überschreitet. Der Effekt ist nach Philip Warren Anderson benannt, der 1958 im Paper Absence of Diffusion in Certain Random Lattices ein einfaches Modell zur Beschreibung solcher Transportprozesse vorschlug, und den Effekt vorhersagte.

Der Hamilton-Operator für dieses sogenannte Anderson-Modell ist:

$ H = \sum\limits_{n,m} t_{nm} \big( |n\rangle\langle m| + |m\rangle\langle n| \big) + W \sum\limits_n v_n |n\rangle\langle n| $,

wobei $ |n\rangle $ den Zustand am Gitterplatz $ n $ (siehe Wannier-Basis) bezeichnet und die Summen über alle Gitterplätze des $ d $-dimensionalen hyperkubischen Gitters laufen, $ t_{nm} $ das Hüpfmatrix-Element für den Hüpfprozess zwischen den Gitterplätzen $ n $ und $ m $ (und umgekehrt) ist, $ W $ die Potentialstärke und die Menge der $ v_n \in \left[ -\tfrac{1}{2}, \tfrac{1}{2} \right] $ eine zufällige Anordnung der on-site-Energien ist. Vereinfacht werden oft nur Hüpfprozesse zwischen nächsten Nachbarn betrachtet, die dann alle dasselbe Hüpfmatrix-Element haben[1]; dann erkennt man ein Tight-Binding-Modell, d.h. das Teilchen (hier keine Wechselwirkungseffekte, daher Einteilchenbild) erhält kinetische Energie durch Hüpfprozesse, muss allerdings eine vom Gitterplatz abhängige potentielle Energie bezahlen (daher on-site-Energie). Wie bereits zuvor erwähnt, kann es in diesem Modell nun aus zwei Gründen zur Lokalisierung des Elektrons kommen: Wenn das Potential sehr stark wird und wenn es hinreichend ungeordnet ist[1].

Infolge der Anderson-Lokalisierung verschwinden am absoluten Temperaturnullpunkt bei Überschreiten der erwähnten Schwelle die elektrische Leitfähigkeit und alle anderen mit der Diffusivität zusammenhängenden Größen; man spricht deshalb auch von einem (Anderson’schen) Metall-Isolator-Übergang (es gibt auch den sog. Mott’schen Metall-Isolator-Übergang; dieser wird nicht durch Unordnung, sondern durch elektrostatische Korrelationseffekte verursacht).

In der quantenmechanischen Lokalisierungstheorie wird ein Teilchen in einer mikroskopisch ungeordneten Umgebung betrachtet (sog. zufälliges Potential), während beim analogen klassischen Problem, dem Perkolationsproblem, ein makroskopisch inhomogenes System vorliegt. In beiden Fällen tritt ein Phasenübergang auf, der durch die Existenz einer kritischen Energie $ E_\mathrm{c} $ charakterisiert wird. Bei der Behandlung von Leiter-Isolator-Übergängen vom Anderson-Typ sind speziell die Einelektronen-Wellenfunktionen „ausgedehnt“ (also nicht-quadratintegrierbar und leitfähig), wenn $ E > E_\mathrm{c} $ ist, und sie fallen exponentiell ab (d. h. sie sind „lokalisiert“, also quadratintegrierbar und nicht-leitfähig) für $ E < E_\mathrm{c} $. Daher ist der elektronische Transport in einem ungeordneten System bei $ T = 0 $ wesentlich von der Lage der Fermi-Kante $ E_\mathrm{F} $ relativ zu $ E_{\rm c} $ abhängig. Für $ E_\mathrm{F} > E_\mathrm{c} $ liegt ein Leiter vor, für $ E_\mathrm{F} < E_\mathrm{c} $ dagegen ein Isolator. Dieser Übergang heißt, wie erwähnt, Anderson-Übergang.

Literatur

  • P. W. Anderson: Absence of Diffusion in Certain Random Lattices. In: Physical Review. Band 109, Nr. 5, 1. März 1958, S. 1492–1505, doi:10.1103/PhysRev.109.1492.
  • Diederik S. Wiersma, Paolo Bartolini, Ad Lagendijk, Roberto Righini: Localization of light in a disordered medium. In: Nature. Band 390, Nr. 6661, 18. Dezember 1997, S. 671–673, doi:10.1038/37757.

Einzelnachweise

  1. 1,0 1,1 André Wobst: Phase-space signatures of the Anderson transition. In: Physical Review B. Band 68, Nr. 8, 1. Januar 2003, doi:10.1103/PhysRevB.68.085103 (aps.org [abgerufen am 29. Juli 2016]).

Diese Artikel könnten dir auch gefallen



Die letzten News


05.08.2021
Exoplanet mit lediglich der halben Masse der Venus aufgespürt
Eine Gruppe von Astronomen hat mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile neue Erkenntnisse über Planeten um den nahen Stern L 98-59 gewonnen, die denen des inneren Sonnensystems ähneln.
05.08.2021
Superflares: für Exoplaneten weniger gefährlich als gedacht
Superflares, extreme Strahlungsausbrüche von Sternen, standen bisher im Verdacht, den Atmosphären und damit der Habitabilität von Exoplaneten nachhaltig zu schaden.
05.08.2021
„Spin“ einer Nanoschallwelle erstmals in Echtzeit nachgewiesen
Einem deutsch-amerikanischen Forscherteam ist es gelungen, die rollende Bewegung einer Nanoschallwelle nachzuweisen. Diese hatter der Physiker und Nobelpreisträger Lord Rayleigh 1885 vorhergesagt.
31.07.2021
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
31.07.2021
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
31.07.2021
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.