Optisches Gitter (Quantenoptik)

Optisches Gitter (Quantenoptik)

Schematische zweidimensionale Darstellung des Potentialverlauf (grau) eines optischen Gitters mit einer zufälligen Verteilung von Atomen (rot)

Ein optisches Gitter (englischer Fachbegriff optical lattice) bezeichnet in der Quantenoptik eine räumlich periodische Struktur aus Laserstrahlung, in der Atome oder Moleküle gefangen werden können.

Funktionsweise

Die Struktur des optischen Gitters entsteht durch die Interferenz von Laserlicht. Dabei kommt es bei geeigneter Wahl der Laserparameter zu einer stehenden Welle, die aufgrund der Stark-Verschiebung für Atome ein periodisches Potential hervorruft. Das zugrundeliegende Prinzip ist mit dem der optischen Pinzette identisch: das Laserlicht induziert in jedem der Atome ein elektrisches Dipolmoment, dessen Wechselwirkung mit dem Licht in einer Kraft auf das Atom resultiert. Je nach Vorzeichen der Verstimmung des Laserlichts bezüglich der atomaren Übergangsfrequenz werden die Atome in die Knoten (Intensitätsminima) bzw. Bäuche (Intensitätsmaxima) der stehenden Welle gezogen. Die genaue Geometrie des erzeugten Potentials hängt von der Anordnung der Laserstrahlen und der daraus resultierenden Komplexität des Interferenzmusters ab.

Bandstruktur

Das periodische Potential verändert die Dispersionsrelation für die Bewegung der Atome entsprechend dem Bloch-Theorem. Es entsteht eine Bandstruktur analog zur Bandstruktur der Elektronen in Kristallen. Mit der Geometrie des Interferenzmusters lässt sich im Prinzip auch diese Bandstruktur maßschneidern. Im Gegensatz zu Festkörpersystemen ist es in optischen Gittern zusätzlich möglich, die Potentialtiefe und damit die Bandstruktur dynamisch (also während die Atome darin sitzen) zu verändern.

Konsequenzen

Wenn es eine hinreichend starke Wechselwirkung zwischen den Atomen gibt, erlaubt die Bandstruktur die Bildung von dunklen (lochartigen) und hellen (teilchenartigen) Solitonen, da die Wechselwirkung unter Umständen genau die Dispersion kompensieren kann. Auf eine externe Kraft, z. B. die Gravitation, reagieren die Atome im optischen Gitter mit Bloch-Oszillationen, die sich in diesen Systemen extrem genau vermessen lassen.

Beobachtung

Meistens werden die Atome nicht im optischen Gitter beobachtet, sondern nach Abschalten des Lichtpotentials und einer gewissen Flugzeit. Dabei wird die Absorption eines Laserstrahls, der die Atome beleuchtet, auf einer CCD-Kamera registriert. Die Methodik ist vergleichbar mit der Detektion von Bose-Einstein-Kondensaten. Auf diese Weise kann man im Allgemeinen die Quasiimpuls-Verteilung messen, nicht jedoch direkt die räumliche Verteilung der Atome.

Insbesondere ist es schwierig, individuelle Gitterplätze zu beobachten, da diese im Extremfall nur eine halbe Lichtwellenlänge voneinander entfernt sind. Man hat daher bei optischer Beobachtung einzelner Gitterplätze mit der Beugungsbegrenzung der optischen Auflösung zu kämpfen. 2008 ist es jedoch mehreren Forschergruppen gelungen, einzelne Gitterplätze in einem optischen Gitter abzubilden, und - teilweise in Echtzeit und mit einer Detektionsempfindlichkeit, die dazu ausreicht, einzelne Atome nachzuweisen - deren Bewegung zu verfolgen. Darüber hinaus ist auch eine Methode entwickelt worden, die mit der Rasterelektronenmikroskopie verwandt ist und einzelne Atome durch Ionisation mit einem Elektronenstrahl nachweist, welcher sich wesentlich schärfer fokussieren lässt.[1]

Anwendung

Ein zweidimensionales optisches Gitter mit jeweils einem Atom in jeder Senke

Werden die Senken eines dreidimensionalen optischen Gitters mit jeweils einem Atom gefüllt, so hat es viele Eigenschaften von Kristallen. Solche optischen Gitter haben gegenüber den aus der Festkörperphysik bekannten Systemen den Vorteil, dass sich ihre Parameter durch das verwendete Laserlicht leicht verändern lassen. Sie können daher als Modellsysteme für Probleme aus der Festkörperphysik verwendet werden und gelten als aussichtsreiche Kandidaten für die Realisierung eines Quantencomputers.

Atome in optischen Gittern gelten darüber hinaus neben gefangenen Ionen als aussichtsreiche Kandidaten für die Realisierung noch präziserer Atomuhren, so genannter Gitteruhren.

Einzelnachweise

  1. T. Gericke et al.: High-resolution scanning electron microscopy of an ultracold quantum gas. In: Nature physics. 2008, doi:10.1038/nphys1102 (Uni Ulm [PDF; 669 kB]).

Literatur

  • Oliver Morsch, Markus Oberthaler: Dynamics of Bose-Einstein condensates in optical lattices. In: Reviews of Modern Physics. Band 78, Nr. 1, 27. Februar 2006, S. 179–215, doi:10.1103/RevModPhys.78.179.
  • Immanuel Bloch: Ultracold quantum gases in optical lattices. In: Nature Physics. Band 1, Nr. 1, 2005, S. 23–30, doi:10.1038/nphys138.
  • H.-J. Briegel, T. Calarco, D. Jaksch, J. I. Cirac, P. Zoller: Quantum computing with neutral atoms. In: Journal of Modern Optics. Band 47, Nr. 2-3, 2000, S. 415–451, doi:10.1080/09500340008244052, arxiv:quant-ph/9904010.

Weblinks


Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.