Optische Pinzette

Optische Pinzette

Glas-Nanoteilchen in einer optischen Falle

Eine optische Pinzette, auch optische Falle oder Dipolfalle,[1] ist ein photonisches Gerät zur Manipulation, d. h. zum Festhalten und Bewegen, kleinster Objekte. Die Funktion beruht darauf, dass Licht auf mikroskopische Objekte (z. B. Mikrokugeln, einzelne biologische Zellen, Zellorganellen oder gar Atome) eine Kraft ausübt, und dadurch die Objekte zum Fokus eines stark fokussierten Lichtstrahls gezogen werden.

Eine typische Ausführung spiegelt einen Laserstrahl in ein optisches Mikroskop ein, der dadurch in der Objektebene fokussiert wird. Die zu manipulierenden Teile müssen bei der verwendeten Wellenlänge transparent sein. Wenn der Laser einmal so eingestellt ist, dass das Objekt im Fokus liegt, führt jede Lageabweichung dazu, dass es durch Impulsübertragung bei der Brechung wieder in den Fokus gezogen wird.

Außer durch fokussierende Optiken wird auch mit holografischer Bündelung des Laserlichts gearbeitet.

Durch Benutzung eines zweiten Lasers mit einer Wellenlänge, die vom Objekt absorbiert wird (meist Ultraviolett), hat man zusätzlich ein schneidendes Instrument (Mikro-Laserskalpell) zur Verfügung.

Geschichte und Entdeckung

Die erste wissenschaftliche Untersuchung von Kräften auf Teilchen in der Größenordnung von Mikrometern, verursacht durch Streuung von Licht und Gradientenkräfte, wurde 1970 von Arthur Ashkin veröffentlicht,[2] damals Physiker an den Bell Laboratories (USA). Einige Jahre später berichteten Ashkin und Kollegen von der ersten Beobachtung der Möglichkeit, mit Hilfe eines stark fokussierten Lichtstrahls mikroskopische Teilchen in drei Raumdimensionen festzuhalten. Diese Entdeckung war die Grundlage zur Entwicklung der Optischen Falle.[3]

Einer der Coautoren dieser Veröffentlichung war Steven Chu, der die Technik zur Laserkühlung und der Speicherung von Atomen fortentwickelte. Für die Entwicklung von Methoden zum Kühlen und Einfangen von Atomen mit Hilfe von Laserlicht erhielt er den Nobelpreis in Physik 1997 gemeinsam mit dem theoretischen Physiker Claude Cohen-Tannoudji und William D. Phillips.

In einem Interview beschrieb Steven Chu, wie Ashkin als erster die Optische Pinzette als Methode zum Festhalten von Atomen beschrieben hatte. Dabei war es Ashkin möglich, große Teilchen zu fangen (10–10.000 nm Durchmesser). Chu verbesserte diese Technik auf kleinere Teilchen bis zu 0,1 nm Durchmesser.

Die erste Arbeit, in der lebende biologische Objekte (Zellen) mit einer optischen Pinzette erfolgreich manipuliert wurden, stammt von Ashkin und Dziedzic.[4]

Funktionsweise

Die optischen Kräfte, die Optische Pinzetten auf ein Silikon- oder Latex-Kügelchen in Mikrometer- oder Nanometer-Größe ausüben, liegen zwischen einem Pikonewton und mehr als einem Nanonewton. Diese Kräfte reichen aus, um frei diffundierende Teilchen in Wasser ruhig zu halten oder biologische Moleküle physiologisch relevant zu beeinflussen. Meistens werden Optische Pinzetten zur Manipulation von Teilchen in Lösung eingesetzt (z. B. in Wasser oder in Luft).[5]

Eine kleine dielektrische Kugel, welche signifikant kleiner ist als die eingestrahlte Wellenlänge, wechselwirkt mit dem elektromagnetischen Feld eines eingestrahlten Lichtstrahls, indem ein elektrischer Dipol Elektromagnetische induziert wird. Die daraus resultierende Wechselwirkung zwischen induziertem Dipol und induzierendem Feld führt zu einer Kraft entlang des elektrischen Feldgradienten (Gradientenkraft/Dipolkraft) in Richtung des Ortes maximaler Lichtintensität.

Dieser Kraft überlagert sich ein zweiter Effekt, interpretierbar als der intuitive klassische Strahlungsdruck. Reflexion und Brechung des Lichtstrahls an der Oberfläche des Kügelchens führen zu einem Impulsübertrag nach den Regeln der Impulserhaltung. Effektiv entsteht so eine Kraft und damit Bewegung des Kügelchens in Ausbreitungsrichtung des Lichtstrahls.

Sofern der Strahl stark genug fokussiert ist, überwiegt die Gradientenkraft die Kraft aufgrund des Strahlungsdruckes. Eine Manipulation des Orts eines Kügelchens in einer Ebene, die senkrecht auf dem Laserstrahl steht, wird möglich, das Kügelchen „folgt“ dem Strahl. Im Detail kann aus der Elektrodynamik semiklassisch die Lichtkraft in Dipolkraft und Spontankraft separiert werden, wobei zweitere den oben erwähnten „Strahlungsdruck“ erzeugt.

Mit spezieller Strahlformungsoptik können auch die "selbst-heilenden" Eigenschaften von Bessel-Strahlen für optische Pinzetten eingesetzt werden.[6]

Die Wellenlänge wird so gewählt, dass das Licht kaum von den Chromophoren der Zelle absorbiert wird.[7] Aufgrund des großen Oberfläche-Volumen-Verhältnisses der Partikel wird die absorbierte Energie zudem schnell an das Wasser der Umgebung abgegeben.[7]

Weblinks

Einzelnachweise

  1. Optische Dipolfallen
  2. A. Ashkin: Acceleration and Trapping of Particles by Radiation Pressure. In: Physical Review Letters. Band 24, Nr. 4, 26. Januar 1970, S. 156–159, doi:10.1103/PhysRevLett.24.156.
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, Steven Chu: Observation of a single-beam gradient force optical trap for dielectric particles. In: Optics Letters. Band 11, Nr. 5, 1. Mai 1986, S. 288–290, doi:10.1364/OL.11.000288.
  4. A. Ashkin, J. M. Dziedzic: Optical trapping and manipulation of viruses and bacteria. In: Science. Band 235, Nr. 4795, 20. März 1987, S. 1517–1520, doi:10.1126/science.3547653.
  5. Christian Schmitz, Joachim Spatz, Jennifer Curtis: High-precision steering of multiple holographic optical traps. In: Optics Express. Band 13, Nr. 21, 17. Oktober 2005, S. 8678–8685, doi:10.1364/OPEX.13.008678.
  6. J. Arlt, V. Garces-Chavez, W. Sibbett, K. Dholakia: Optical micromanipulation using a Bessel light beam. In: Optics Communications. Band 197, Heft 4–6, Oktober 2001, ISSN 0030-4018, S. 239–245, doi:10.1016/S0030-4018(01)01479-1 (english, delmarphotonics.com [PDF; abgerufen am 7. August 2016]).
  7. 7,0 7,1 Miles J. Padgett: Optical Tweezers. CRC Press, 2010, ISBN 978-1-420-07414-7, S. 36.

Ähnliche Artikel wie "Optische Pinzette" auf cosmos-indirekt.de

20.09.2019

Neue Methode zur Vermessung nano-strukturierter Lichtfelder
Physikern und Chemikern der Westfälischen Wilhelms-Universität Münster ist es gemeinsam gelungen, ein sogenanntes nano-tomographisches Messverfahren zu entwickeln, das die unsichtbaren Eigenschaften von Nano-Lichtfeldern im Fokus einer Linse „sichtbar“ macht.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.