Galileische Monde

Galileische Monde

Die Galileischen Monde (von links nach rechts: Io, Europa, Ganymed, Kallisto)
Jupiter mit seinen vier größten Monden (Montage)

Die galileischen Monde (auch galileische Satelliten oder galileische Trabanten) sind die vier größten Satelliten des Planeten Jupiter:

Durch die Bezeichnung als galileische Monde wird der italienische Astronom und Naturforscher Galileo Galilei geehrt, der sie 1610 als erster beschrieb; zu Einzelheiten der Namensgebung und Entdeckungsgeschichte siehe Abschnitt Wissenschaftsgeschichte.

Eigenschaften

Die beiden Fotomontagen, aus einzelnen Aufnahmen der Raumsonde Galileo zusammengesetzt, zeigen die Galileischen Monde im richtigen Maßstab zueinander und zum Jupiter. Ihre Distanzen vom Riesenplaneten sind jedoch viel größer, sie liegen zwischen dem drei- bis dreizehnfachen Jupiterdurchmesser.

Die Monde sind in der rechten Aufnahme von oben nach unten (und in der oberen Aufnahme von links nach rechts) Io, Europa, Ganymed und Kallisto. Dies ist auch die tatsächliche Reihenfolge ihrer Entfernungen vom Jupiter, wobei Io dem Planeten am nächsten und Kallisto am fernsten ist.

Die Galileischen Monde gehören zu den größten im Sonnensystem. Mit einem Durchmesser von 5262 km ist Ganymed sogar größer (wenn auch masseärmer) als der Planet Merkur. Die Oberflächen der Monde sind höchst unterschiedlich. Aufsehen erregte der Mond Io, als man beim Vorbeiflug der Sonde Voyager 1 aktive Vulkane auf ihm entdeckte (siehe Vulkanismus auf dem Jupitermond Io). Europa hat eine zerfurchte Oberfläche, unter der eventuell ein Ozean liegt (siehe extraterrestrischer Ozean). Auf Ganymed gibt es deutliche Spuren von Tektonik, und Kallisto hat die zweithöchste Kraterdichte im bekannten Sonnensystem.

Die mittlere Dichte der Monde nimmt mit zunehmendem Abstand zum Jupiter ab (von 3,5 bis 1,9 g/cm³), das Material von Kallisto enthält aber schon mehr Eis als Gestein.

Alle anderen Jupitermonde – als fünfter wurde erst 1892 Amalthea mit etwa 150 km Durchmesser entdeckt – haben nicht annähernd die Größe der Galileischen Monde. Ihre gesamte Masse beträgt trotz 59 gezählter weiterer Satelliten kaum ein Promille der Masse von Europa, des kleinsten Galileischen Mondes.

Vergleich einiger Eigenschaften mit denen des Erdmondes und des Merkurs
Objekt
Eigenschaften
Io Europa Ganymed Kallisto (Erd-) Mond
zum Vergleich
Merkur
zum Vergleich
Durchmesser (km) 3.643,2 3.121,6 5.268 4.820,6 3.476 4.878
Masse (1022 kg) 8,94 4,88 14,82 10,76 7,348 33,02
Dichte (g/cm³) 3,56 3,01 1,936 1,851 3,345 5,427
Mittlere Fallbeschleunigung
an der Oberfläche (m/s²)
1,81 1,32 1,81 1,32 1,62 3,7
Mittlere sphärische Albedo
Mittlere geometrische Albedo
 
0,61
 
0,64
 
0,43
 
0,2
0,07
0,12
0,06
0,106
Mittlerer Bahnradius (km) 421.600 670.900 1.070.600 1.883.000 384.405  
Umlaufzeit (Tage) 1,76 3,55 7,16 16,69 27,32  

Erscheinungsbild

Jupiter mit seinen vier größten Monden im Fernrohr
Die Jupiterscheibe (rechts unten) mit den vier (nur bei voller Bildauflösung erkennbaren) Galileischen Monden Io, Ganymed, Europa und Calisto (letzterer bei maximaler Elongation rechts oberhalb von Jupiter) im Verhältnis zum Vollmond bei der Begegnung am 10. April 2017 im Sternbild Jungfrau.

Die Beobachtung der Galileischen Monde ist bei Amateurastronomen sehr beliebt. Sie sind bereits in einem guten Nachtfernglas, z. B. 7 x 50 mm, zu sehen, es empfiehlt sich aber, das Fernglas zum Beispiel mit einem Stativ zu stabilisieren. Sie sind dann als kleine Lichtpunkte neben Jupiter zu sehen und können mit Sternen verwechselt werden. Da die Monde innerhalb von Stunden ihre Position verändern, ist es reizvoll, sie regelmäßig zu beobachten und Bedeckungen durch Jupiter oder Durchgänge vor der Planetenscheibe zu betrachten. Durch ein gutes Teleskop mit einer großen Öffnung, am besten ab 20 cm, sind die Monde als Scheibchen zu sehen, die sich alle in Farbe und Größe unterscheiden; bei hoher Vergrößerung und gutem Seeing ist es sogar möglich, grobe Strukturen zu erkennen.

Da die Monde Schatten werfen, kommt es regelmäßig vor, dass sie eine Sonnenfinsternis auf Jupiter verursachen. In einem Teleskop kann man dann einen kleinen schwarzen Schatten auf Jupiter erkennen, der langsam über die Planetenscheibe wandert. Die Galileischen Monde können sich auch gegenseitig bedecken oder verfinstern. Auch die Beobachtung solcher Phänomene ist mit einem guten Teleskop möglich.

Wissenschaftsgeschichte

Galileo Galilei

Galilei berichtete 1610 in seinem Sidereus Nuncius, er habe die vier Monde am 7. Januar desselben Jahres entdeckt, mit Hilfe eines von ihm selbst gefertigten Fernrohrs. Er nannte sie Sidera Medicea – die „Mediceischen Gestirne“. Ihre Namen im Einzelnen wurden von Simon Marius, einem Astronomen aus Gunzenhausen, (auf Anregung von Johannes Kepler) propagiert. Zusammen bezeichnete Marius sie seinen Markgrafen zu Ehren als Sidera Brandeburgica,[1] als er in einer 1614 erschienenen Schrift behauptete, sie bereits seit 1609 beobachtet zu haben (Die Welt des Jupiter, 1609 mit dem flämischen Teleskop entdeckt – Einzelheiten und wissenschaftshistorische Diskussionen zum entstandenen Prioritätsstreit entnimmt man dem Artikel über Marius).

Mit der Entdeckung dieser Satelliten konnte zum ersten Mal beobachtet werden, dass es Himmelskörper gibt, die sich nicht unmittelbar um die Erde drehen. Da dies ein Widerspruch zum offiziellen geozentrischen Weltbild von Kirche und Gesellschaft war, nach dem alle Himmelskörper um die Erde kreisten, wurden seine Forschungen von einflussreichen Kreisen bekämpft oder nicht anerkannt. Professoren in Florenz weigerten sich sogar, auf Galileis Aufforderung hin durch sein Teleskop zu sehen.

Galilei hatte als Erster vorgeschlagen, den Umlauf der vier Monde als weltweit beobachtbare Uhr zu verwenden. Mit Tabellen und Beobachtungen der Verfinsterungen der Monde sei es möglich, die Ortszeit und damit den Längengrad zu bestimmen. Doch 1676 wies Ole Rømer durch Vergleich von Tabelle und Beobachtung in Paris erstmals nach, dass die Lichtgeschwindigkeit endlich ist. Danach mussten die Tabellen um die Lichtlaufzeit korrigiert werden. Ein weiteres Problem wies Pehr Wilhelm Wargentin um 1740 an der Sternwarte Uppsala nach. Die Monde laufen nicht wie eine Uhr mit konstanter Geschwindigkeit um. Er vermutete, dass die gegenseitige Anziehung der Monde die Ursache dafür sei. Dies wurde 1766 von Lagrange und 1788 durch Laplace durch Störungsrechnung bestätigt. Laplace wies außerdem nach, dass die drei Monde Io, Europa und Ganymed in einem stabilen Zeitverhältnis 1:2:4, der sogenannten Laplace- oder Bahnresonanz umlaufen. Er konnte damit auch erstmals die Massen der Monde berechnen. Heute wird die seltene gegenseitige Verfinsterung der Monde genau beobachtet, um damit die Bahnen von Erkundungssonden wie Galileo genauer berechnen zu können.

Siehe auch

Literatur

  • S. Debarbat, C. Wilson: The Galilean Satellites of Jupiter from Galileo to Cassini, Roemer and Bradley. In: R. Taton, C. Wilson (Hrsg.): Planetary Astronomy from the Renaissance to the Rise of Astrophysics, Part A: Tycho Brahe to Newton. In: M. Hoskin (Hrsg.): The General History of Astronomy, vol. 2A. Cambridge University Press, New York 1989, S. 144–158.
  • D. Morrison (Hrsg.): Satellites of Jupiter. University of Arizona Press, 1982.

Weblinks

 <Lang> Commons: Galileische Monde – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. J. S. T. Gehler: Nebenplaneten. In: Physicalisches Wörterbuch. 1798.

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.