Den Urknall im Labor nachahmen

Neues aus der Forschung

Meldung vom 22.10.2018

Auch wenn wir die Ereignisse während der Entstehung des Weltraums wohl nie direkt nachahmen können, stehen die Chancen gut, vergleichbare Vorgänge im Labor zu simulieren. So lässt sich die Teilchenbildung kurz nach dem Urknall mit einer in vielen Labors genutzten Ionenfalle zumindest in einiger Hinsicht nachahmen. Wie das funktioniert, erklären jetzt Ralf Schützhold vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Christian Fey von der Universität Hamburg sowie Tobias Schaetz von der Albert-Ludwigs-Universität Freiburg in der Fachzeitschrift „Physical Review A“.


181027-1915_medium.jpg
 
Prof. Ralf Schützhold leitet seit 2018 die Gruppe „Theoretische Physik“ am HZDR
Christian Fey, Tobias Schaetz, Ralf Schützhold
Ion-trap analog of particle creation in cosmology
Physical Review A
DOI: 10.1103/PhysRevA.98.033407


Am Anfang war die Welt wüst und leer. In den Augen eines theoretischen Physikers wie dem HZDR-Forscher und Professor an der TU Dresden, Ralf Schützhold, stimmt diese Aussage nur bedingt. Denn die Theorien erklären zwar, wie das Universum, das wir heute kennen, sich nach dem Urknall in einer Art Inflationsphase unvorstellbar rasch vergrößerte. „Nur war das Vakuum in diesen ersten winzigen Bruchteilen von Sekunden nicht völlig leer, sondern es gab dort Fluktuationen“, erklärt Schützhold eine nur schwer vorstellbare Aussage der Quantenfeldtheorie.

Allerdings bedeutet „Vakuum“ in der Physik nur, dass es dort keine Materie in Form von Molekülen, Atomen oder Elementarteilchen gibt. Zum Beispiel elektrische oder magnetische Felder existieren durchaus. Sie verteilen sich aber nicht völlig gleichmäßig, sondern sind an einigen Stellen ein wenig stärker oder schwächer. Sobald die Inflationsphase beginnt und sich das immer noch winzig kleine Universum extrem rasch und stark aufbläht, reißt es diese Fluktuationen – angetrieben von gigantischen Kräften – schlagartig auseinander. Dabei können sich die gewaltigen Energien in Materie umwandeln. So entsteht ein Paar von Elementarteilchen, die sich in einer Eigenschaft grundlegend unterscheiden: Zum Beispiel kann sich ein Elektron mit einer negativen elektrischen Ladung gemeinsam mit seinem „Positron“ genannten Gegenstück mit einer positiven elektrischen Ladung bilden.

Damals entstanden auch viele andere Elementarteilchen. Diese „Paarbildung“ in einem unvorstellbar kurzen Moment am Anfang der Geschichte des Kosmos sollte für das spätere Schicksal des Universums und für unsere eigene Existenz noch eine sehr wichtige Rolle spielen. Überall dort, wo sie auftauchte, gab es eine kleine Unregelmäßigkeit, Inhomogenitäten entstanden.

Genau an diesen Unregelmäßigkeiten veränderte sich die Temperatur. Diese winzigen Wärme-Schwankungen können Astrophysiker noch heute in der Hintergrundstrahlung nachweisen, die aus den Tiefen des Weltraums zu uns dringt. Das Echo des Urknalls hallt also 13,8 Milliarden Jahre später immer noch nach. Die Paarbildung an solchen Fluktuationen sorgte auch dafür, dass die Teilchen sich nicht völlig gleichmäßig im Weltraum verteilen. An den Stellen, an denen sich etwas mehr Teilchen als andernorts befanden, war auch die Schwerkraft ein wenig stärker. Die erhöhten Konzentrationen zogen daher noch mehr Materie an und wurden so noch größer, bis sich schließlich aus diesen Ansammlungen riesige Galaxien bildeten, die aus vielen Milliarden Sternen bestehen. Erst diese Galaxien und ihre Sonnen aber schufen die Möglichkeiten für Leben, wie wir es von der Erde kennen.

Über die Paarbildung am Anfang dieser Entwicklung hat bereits der berühmte Wiener Physiker Erwin Schrödinger nachgedacht. Irène und Frédéric Joliot-Curie beobachteten 1933 zum ersten Mal, wie ein Elektronen-Positronen-Paar aus Lichtenergie entstand. „Die Paarbildung aus den auseinander gerissenen Fluktuationen in der inflationären Phase des Weltraums aber befindet sich leider weit außerhalb unserer Möglichkeiten“, erklärt Schützhold, der am HZDR seit kurzem die Gruppe „Theoretische Physik“ aufbaut.

Daher gibt es immer wieder Vorschläge, wie sich diese Theorie in der Praxis überprüfen lässt. Gemeinsam mit Christian Fey von der Universität Hamburg und Tobias Schaetz von der Universität Freiburg legt Ralf Schützhold in der Zeitschrift „Physical Review A“ jetzt einen neuen Vorschlag vor: Tobias Schaetz könnte die Paarbildung in der inflationären Phase mit Hilfe einer „Ionenfalle“ nachahmen.

Ein elektromagnetisches Feld hält in einer solchen Ionenfalle zum Beispiel elektrisch positiv geladene Magnesium-Ionen so fest, dass sie sich nur entlang der Mittelachse eines Zylinders bewegen können. Ein zweites elektromagnetisches Feld fixiert nun das Ion an einer bestimmten Stelle der Mittelachse. Halten elektromagnetische Felder unmittelbar daneben in einem Abstand von wenigen tausendstel Millimetern ein zweites, ebenfalls positiv geladenes Magnesium-Ion fest, stoßen sich die beiden positiven elektrischen Ladungen stark ab.

Lockern die Forscher nun ein wenig das elektromagnetische Feld, das die Ionen festhält, schießen beide – angetrieben von der abstoßenden Kraft ihrer gleichen elektrischen Ladungen – in entgegengesetzter Richtung entlang der Achse des Zylinders davon. Manchmal bewegt sich das davonfliegende Ion zusätzlich ein klein wenig senkrecht zu dieser Achse. Stellen die Forscher eine solche Schwingung bei einem der Ionen fest, verlangen die Gesetze der Quantenphysik, dass auch der in die andere Richtung davonschießende Partner mit der gleichen Energie schwingt. Ähnliches gilt für die Paarbildung beim Auseinanderreißen im frühen Universum.

„Verschränken“ nennen theoretische Physiker dieses Phänomen, bei dem die beiden gemeinsam entstandenen Teilchen sich weit voneinander entfernen können, aber bestimmte Merkmale immer noch die gemeinsame Herkunft verraten. Und da diese Verschränkung sehr wichtig für den Bau von extrem leistungsfähigen Quantencomputern ist, investieren die Forscher mit dem Nachahmen der Vorgänge beim Urknall in Ionenfallen auch eine klein wenig in eine Zukunftstechnologie.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung