Planeten und Asteroiden wiegen

Neues aus der Forschung

Meldung vom 23.10.2018

Ein Forscherteam des “International Pulsar Timing Array”-Konsortiums unter der Leitung von Wissenschaftlern am Bonner Max-Planck-Institut für Radioastronomie hat über Zeitreihenmessungen von Pulsaren die Massen des Zwergplaneten Ceres und anderer Asteroiden im Sonnensystem bestimmt. Das Resultat für die Masse von Ceres liegt bei 1,3% der Masse des Erdmonds. Das Team konnte die Massen der großen Planeten im Sonnensystem wesentlich genauer bestimmen als in früheren Messungen mit dieser Methode. Die Ergebnisse zeigen, welches Potential Zeitreihenmessungen von Pulsaren dafür haben, bisher unbekannte massereiche Objekte in Umlaufbahnen um die Sonne aufzuspüren.


181027-1922_medium.jpg
 
Erde, Mond und Zwergplanet Ceres im Vergleich. Aus der Analyse der Zeitreihenmessungen von Pulsaren ergibt sich für Ceres eine Masse von 4.7×10-10 Sonnenmassen; das sind 1,3% der Masse des Erdmonds.
R. N. Caballero et al.
Studying the solar system with the International PulsarTiming Array
Monthly Notices of the Royal Astronomical Society
DOI: 10.1093/mnras/sty2632


Objekte in unserem Sonnensystem können mithilfe einer Methode gewogen werden, bei der Beobachtungsdaten von Pulsaren einer genauen Untersuchung unterzogen werden. Pulsare sind sehr schnell rotierende Sterne von geringem Durchmesser, die extrem regelmäßige “Pulse” im Radiobereich aussenden. Diese Technik, Pulsarankunftszeiten zur Massenbestimmung von Planeten zu nutzen, wurde erstmalig im Jahr 2010 von einem Forscherteam unter der Leitung von David Champion vom Max-Planck-Institut für Radioastronomie (MPIfR) angewandt. Sie beruht auf der extrem präzisen Zeitreihenbestimmung einer großen Anzahl von Millisekundenpulsaren.

Die Astronomen zeichnen bei dieser Methode die gebündelte Radiostrahlung dieser Objekte auf, die als periodische Pulse ähnlich den Lichtsignalen von Leuchttürmen mit Radioteleskopen erfasst werden. Im Gegensatz zur Lichtquelle in Leuchttürmen rotieren diese Himmelsobjekte jedoch mit enormer Geschwindigkeit, mit Umlaufzeiten bis zu nur wenigen Millisekunden. Sie bilden aufgrund ihrer gewaltigen Schwungmasse die ganggenauesten Uhren unter den Himmelskörpern im Universum. Beobachtungen mit den größten Radioteleskopen der Erde sind erforderlich, um die schwachen Signale von diesen Objekten zu erfassen.


 
Radioteleskope im Rahmen des “International Pulsar Timing Array” (IPTA). Im Uhrzeigersinn startend von oben links: Effelsberg, Nancay, Arecibo, Parkes, Lovell-Teleskop, Westerbork und GBT.

“Mit ausgeklügelten Modellen für ihre Rotation können wir die Ankunftszeit der Pulse von Millisekundenpulsaren auf eine Genauigkeit von nur einigen hundert Nanosekunden über Jahrzehnte hinweg bestimmen. Das ermöglicht es uns, sie als hochgenaue Uhren für eine Vielzahl von unterschiedlichen Anwendungen zu nutzen”, sagt der Erstautor Nicolas Caballero der diese Untersuchung im Rahmen seiner Doktorarbeit am MPIfR vorgenommen hat und inzwischen seine Forschungen am Kavli Institut für Astronomie und Astrophysik an der Universität Peking fortsetzt.

Die Bahnbewegung der Erde um die Sonne erschwert die direkte Verwendung der aufgezeichneten Ankunftszeiten der Pulse am Radioteleskop. Die Astronomen umgehen dieses Problem, indem sie die Ankunftszeiten auf ein gemeinsames Bezugssystem umrechnen, das auf dem Massenzentrum des gesamten Sonnensystems, dem sogenannten Baryzentrum, basiert.

“Wir sind dabei auf Ergebnisse angewiesen, die wir von unseren Kollegen aus der planetaren Astronomie erhalten. Diese berechnen aus einer Fülle von Daten, unter Einbeziehung der Vorbeiflüge von Raumfahrzeugen, Ephemeriden für unser Sonnensystem, welche die Umlaufbahnen von Planeten, Monden und Asteroiden beschreiben”, sagt Nicolas Caballero.

Wenn in diese Ephemeridenberechnung ein falscher Massenwert für die Masse eines Körpers einfließt, dann verschiebt sich die Position des Baryzentrums, was umgekehrt betrachtet periodische Verzögerungen oder Beschleunigungen in der erwarteten Ankunftszeit der Pulse von den Pulsaren erzeugt. Vergleicht man diese Erwartungen mit den tatsächlichen Pulsarmessungen, kann man die korrekten Massen der Körper bestimmen.

Unter Verwendung der aktuellsten Beobachtungsdaten vom “International Pulsar Timing Array” (IPTA) ist es den Pulsar-Astronomen gelungen, solche Massenabweichungen um eine Größenordnung genauer bestimmen zu können als bei der vorhergehenden Untersuchung aus dem Jahr 2010. Bezogen auf die Entfernung des Asteroidengürtels zwischen Mars und Jupiter ergeben die Beobachtungsdaten eine Empfindlichkeit von nur noch 0.0003% der Erdmasse.

Der Asteroid Ceres, der erst kürzlich als Zwergplanet eingestuft wurde, ist das massereichste Objekt im Asteroidengürtel. Aus der Zeitreihenanalyse der Pulsardaten ergibt sich ein Wert von 4.4 × 10-10 Sonnenmassen (entsprechend 1.3% der Masse des Erdmonds) für Ceres. Diese Genauigkeit liegt eine Größenordnung unter den bisher besten Schätzungen. Die vorliegende Veröffentlichung enthält zudem noch Massenbestimmungen für vier weitere Asteroiden.

“Wir sind jetzt in der Lage, die Massen von Ceres und weiteren massereichen Asteroiden abzuleiten”, sagt David Champion. “Das zeigt die Verbesserungen unserer Beobachtungen bezogen auf die zwei hier relevanten Aspekte der Präzision und der Empfindlichkeit.”

“Unser derzeitiger Datensatz erstreckt sich über zwei Jahrzehnte und ist das Resultat einer hochgenauen und kontinuierlichen Arbeit über viele Jahre”, erklärt Michael Kramer, Leiter der Forschungsabteilung “Radioastronomische Fundamentalphysik” am MPIfR und ebenfalls Ko-Autor der Veröffentlichung. “Hinter dem kontinuierlichen Erfolg der Zeitreihenanalyse von Pulsarsignalen steht die Arbeit von Hunderten von Wissenschaftlern und Ingenieuren aus der ganzen Welt.”

Die hier vorliegende Untersuchung geht über die Massenbestimmung bereits bekannter Planeten und Asteroiden hinaus. Durch die Anwendung einer Methode, die bereits früher in einer Veröffentlichung unter der Leitung von Yanjun Guo vorgestellt wurde, hat das internationale IPTA-Konsortium nach zusätzlichen Massen im Sonnensystem gesucht, die bisher nicht in die Ephemeriden eingegangen sind. Damit konnten obere Grenzwerte für die Massen solcher Objekte in Umlaufbahnen um die Sonne angegeben werden.

“Es ist bis jetzt eine Vorstudie, bei der wir nur unbekannte Himmelskörper in ungestörten exzentrischen Umlaufbahnen berücksicht haben. Sie zeigt aber bereits die aufregenden Möglichkeiten, die die Zeitreihenanalyse von Pulsarsignalen für die Untersuchung des Sonnensystems eröffnet, angefangen beim theoretisch vorhergesagten neunten Planeten bis hin zu Dunkler Materie in der Nachbarschaft der Sonne”, stimmen Yanjun Guo und Erstautor Nicolas Caballero überein.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung