Radiale Verteilungsfunktion

Radiale Verteilungsfunktion

Dieser Artikel behandelt die radiale Verteilungsfunktion in der Statistischen Physik. Für die radiale Wahrscheinlichkeitsdichtefunktion in der Quantenmechanik, siehe dort.

Die radiale Verteilungsfunktion (Abkürzung rdf) mit dem Formelzeichen $ g_{AB}(r) $ zwischen zwei Teilchensorten A und B beschreibt die Häufigkeit, mit der man ein Teilchen der Sorte B im Abstand $ r $ von einem Teilchen der Sorte A findet, bezogen auf die Häufigkeit, dass zwei Teilchen eines idealen Gases in diesem Abstand vorliegen. Die radiale Verteilungsfunktion ist somit dimensionslos.[1]

Bestimmung

Abbildung 1: Schema zur Bestimmung der rdf

Zur Bestimmung der radialen Verteilungsfunktion zählt man wie in Abbildung 1 die Zahl der Teilchen der Sorte B (blau) in der Kugelschale mit Radius $ r $ und Dicke $ dr $ $ \left(\lim_{dr \to 0}\right) $ um ein Teilchen der Sorte A (dunkelrot). Dadurch erhält man ein Histogramm. Normiert man dieses Histogramm entsprechend, erhält man die radiale Verteilungsfunktion. Bei Molekulardynamik oder Metropolis-Importance-Sampling gilt folgende Formel: $ \text{rdf}(R)=\left(\frac{H(R)}{\text{num} \cdot V(R)}\right)/\rho_0 $. Hierbei wird der Histogrammeintrag, welcher dem Abstand $ R $ zugeordnet ist, durch das Bin-Volumen $ V(R) $, sowie die Zahl der Stichproben ($ \text{num} $) geteilt, wodurch man eine mittlere Dichte im Bin erhält. Diese mittlere Dichte wird anschließend mit der Dichte eines idealen Gases $ \rho_0=N/V $ verglichen.

Definition

Im NVT-Ensemble kann die radiale Verteilungsfunktion auch aus der 2N-Punkt-Wahrscheinlichkeitsdichte (N Orte und N Geschwindigkeiten)

$ p_N(\vec{r}^N,\vec{v}^N) = \frac{\exp(-\beta \cdot \mathcal{H}(\vec{v}^N,\vec{r}^N))}{Z_N(V,T)} $

für eine Hamiltonfunktion $ \mathcal{H} $ erhalten werden.

Durch Abintegrieren von $ N-2 $ Orten und allen Geschwindigkeiten aus der 2N-Punkt-Wahrscheinlichkeitsdichte erhält man zunächst die 2-Punkt-Wahrscheinlichkeitsdichte $ p^{(2)}_N(r_1,r_2). $

Diese normiert man mit $ \frac{N!}{(N-2)!} \frac{1}{\rho^2} $, wobei $ \rho = N/V $ die mittlere Teilchenzahldichte ist:

$ g_N(r_1,r_2) = \frac{N!}{(N-2)!} \frac{1}{\rho^2} \cdot p^{(2)}_N(r_1,r_2) $

Im Thermodynamischen Limes gilt:

$ \lim_{N \to \infty, V \to \infty, \frac{N}{V} = \text{const}} g_N(r_1,r_2) = g(r_1,r_2) $.

In einem homogenen System ist

$ g(r_1,r_2) = g(r_1 - r_2) =: g(r) $

Paarverteilungsfunktion

Radiale Verteilungsfunktion einer Lennard-Jones-Flüssigkeit. Die radiale Verteilungsfunktion nimmt um $ r=0 $ praktisch den Wert 0 an, da die Teilchen mit einem Lennard-Jones-Potential wechselwirken und somit praktisch nicht überlappen können.

Die Paarverteilungsfunktion (auch Paarkorrelationsfunktion) $ g_{AB}(\vec{r}) $ hängt nicht nur vom Abstand $ r $ ab, sondern wegen $ \vec r = \vec r (r, \theta, \phi) $ (Kugelkoordinaten) auch von den Winkeln $ \theta $ und $ \phi $. Die (statische) Paarkorrelationsfunktion ist gegeben durch:

$ g(\vec{r}) = \frac{V}{N^2}\left\langle \sum_{i \neq j} \delta(\vec{r} - (\vec{R}_i - \vec{R}_j)) \right\rangle. $

Dieses Ergebnis erhält man aus der Berechnung der (kollektiven) Van-Hove-Korrelationsfunktion $ G(\vec{r},t):=\frac{V}{N} \langle \rho(\vec{\tilde r},\tilde t)\rho(\vec{\tilde{\tilde{r}}},\tilde{\tilde{t}}) \rangle $[2], indem man die Definition der Dichte $ \rho(\vec{\tilde r},\tilde t)=\sum_{i=1}^N \delta(\vec{\tilde r}-\vec{\tilde R}_i(t)) $ einsetzt, über $ \vec{\tilde r} $ abintegriert und anschließend bei $ t=0 $ auswertet. Dabei ist zu beachten, dass $ G(\vec{r},0):=\delta(\vec{r})+\frac{N}{V}g(\vec{r}) $

Anwendungen

Mithilfe der radialen Verteilungsfunktion kann man durch Fouriertransformation den Strukturfaktor bestimmen.

Die radiale Verteilungsfunktion spielt in der Kirkwood-Buff-Theorie eine wichtige Rolle.

In einem homogenen System[3] gibt die Paarkorrelationsfuktion $ g(\vec{r}) $ das „Potential of mean force“ $ w(\vec{r}) $ an, welches durch die Zuweisung $ g(\vec{r}) \overset{!}{=} \exp\left(-\frac{w(\vec{r})}{k_\mathrm{B} \cdot T}\right) $ definiert wird (mit der Boltzmann-Konstanten $ k_\mathrm{B} $).

Einzelnachweise und Anmerkungen

  1. Molecular Modelling: Principles and Applications, Pearson Education, 2001, ISBN 0582382106, Seite 310 ff, Google Books
  2. mit $ \vec{r}=\vec{\tilde{r}}-\vec{\tilde{\tilde{r}}} $, $ t=\tilde{t} - \tilde{\tilde{ t}} $
  3. In homogenen Systemen gilt: $ g(\vec{r}_1, \vec{r}_2)=g(\vec{r}_1+\vec{h}, \vec{r}_2+\vec{h}) $. Wählt man $ \vec{h}=-\vec{r}_2 $, so erhält man $ g(\vec{r}):=g(\underbrace{\vec{r}_1-\vec{r}_2}_{\overset{!}{= \vec{r}}}, \vec{0}) $

Diese Artikel könnten dir auch gefallen



Die letzten News


05.08.2021
Superflares: für Exoplaneten weniger gefährlich als gedacht
Superflares, extreme Strahlungsausbrüche von Sternen, standen bisher im Verdacht, den Atmosphären und damit der Habitabilität von Exoplaneten nachhaltig zu schaden.
05.08.2021
„Spin“ einer Nanoschallwelle erstmals in Echtzeit nachgewiesen
Einem deutsch-amerikanischen Forscherteam ist es gelungen, die rollende Bewegung einer Nanoschallwelle nachzuweisen. Diese hatter der Physiker und Nobelpreisträger Lord Rayleigh 1885 vorhergesagt.
31.07.2021
Wasserdampf-Atmosphäre auf dem Jupitermond Ganymed
Internationales Team entdeckt eine Wasserdampfatmosphäre auf der sonnenzugewandten Seite des Mondes Jupiter-Mondes Ganymed. Die Beobachtungen wurden mit Hubble-Teleskop gemacht.
31.07.2021
Der Quantenkühlschrank
An der TU Wien wurde ein völlig neues Kühlkonzept erfunden. Computersimulationen zeigen, wie man Quantenfelder verwenden könnte, um Tieftemperatur-Rekorde zu brechen.
31.07.2021
Warum Bierdeckel nicht geradeaus fliegen
Wer schon einmal daran gescheitert ist, einen Bierdeckel in einen Hut zu werfen, sollte nun aufhorchen: Physiker der Universität Bonn haben herausgefunden, warum diese Aufgabe so schwierig ist.
27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.