Hydrostatischer Druck

Hydrostatischer Druck

Icon tools.svg
Dieser Artikel wurde den Mitarbeitern der Redaktion Physik zur Qualitätssicherung aufgetragen. Wenn du dich mit dem Thema auskennst, bist du herzlich eingeladen, dich an der Prüfung und möglichen Verbesserung des Artikels zu beteiligen. Der Meinungsaustausch darüber findet derzeit nicht auf der Artikeldiskussionsseite, sondern auf der Qualitätssicherungs-Seite der Physik statt.

Der hydrostatische Druck (griech. ὕδωρ hýdor, Wasser), auch Gravitationsdruck oder Schweredruck, ist der Druck, der sich innerhalb eines ruhenden Fluids, das ist eine Flüssigkeit oder ein Gas, durch den Einfluss der Gravitation einstellt. Der Begriff wird entgegen der Wortbedeutung „Wasser“ auch für andere Flüssigkeiten und sogar für Gase verwendet. Dynamischer Druck durch Fluidströmungen wie z. B. der Staudruck wird vom hydrostatischen Druck nicht erfasst, er betrachtet nur ruhende, statische Fluide.

Inkompressible Flüssigkeiten im homogenen Schwerefeld

Pascal’sches Gesetz

Mit der Wassertiefe steigt der Druck. Zum hydrostatischen Druck hinzu kommt noch der Luftdruck an der Wasseroberfläche. Zu beachten sind die verschiedenen Maßstäbe an der y-Achse: In der Wassersäule steigt der Druck viel schneller an als in der Luftsäule.
Der hydrostatische Druck am Boden ist trotz unterschiedlicher Füllmengen in allen drei Gefäßen gleich groß.

Der hydrostatische Druck für Fluide mit konstanter Dichte im homogenen Schwerefeld (= Inkompressible Fluide, insbesondere Flüssigkeiten) berechnet sich nach dem Pascal’schen (oder pascalschen) Gesetz (benannt nach Blaise Pascal):

$ p(h) = \rho g h + p_0 $

Formelzeichen:

$ \rho $ = Dichte [für Wasser: $ \rho $ ≈ 1.000 kg/m³]
$ g $ = Erdbeschleunigung [für Deutschland: $ g $ ≈ 9,81 m/s²]
$ h $ = Höhe des Flüssigkeitsspiegels über dem betrachteten Punkt
$ p_0 $ = Luftdruck auf Flüssigkeitsoberfläche
$ p(h) $ = hydrostatischer Druck in Abhängigkeit von der Höhe des Flüssigkeitsspiegels.[1]

Einheiten

Die Physikalischen Einheiten für den hydrostatischen Druck sind:

  • international die SI-Einheit
    Pascal (Pa): 1 Pa = 1  N/m²;
  • zudem in Deutschland und Österreich die „gesetzliche Einheit“
    Bar (bar): 1 bar = 100.000 Pa bzw. N/m² (= 100 kPa)

Zur Beschreibung des hydrostatischen Drucks wird zum Teil auch noch die nicht-SI-konforme veraltete Maßeinheit Meter Wassersäule (mWS) verwendet.

Beispiel zum Hydrostatischen Paradoxon

  • Wassersäule, homogene Wassertemperatur: 3,98 °C, Höhe: 50 Meter:
    1.000 kg/m³ × 9,81 m/s² × 50 m ≈ 490.500 N/m² ≈ 4,90 bar
Bei einer Temperatur von 20 °C hat Wasser eine Dichte von 998,203 kg/m³. Der hydrostatische Druck verändert sich minimal zu
998,203 kg/m³ × 9,81 m/s² × 50 m ≈ 489.61857 N/m² ≈ 4,90 bar

Der hydrostatische Druck hängt nicht von der Form eines Gefäßes ab; entscheidend für den Druck an dessen Boden ist alleine die Höhe des Fluid- bzw. Flüssigkeitsspiegels und dessen Dichte (in Abhängigkeit der Temperatur), jedoch nicht die absolute Menge des Fluids im Gefäß. Dieses Phänomen wurde als Hydrostatisches (oder auch Pascal’sches) Paradoxon bekannt.

Gesamtdruck (Absolutdruck) am Boden der Flüssigkeit

Zur vollständigen Beschreibung des Drucks am Boden eines ruhenden inkompressiblen Fluids ist dem hydrostatischen Druck hinzu allerdings noch der Umgebungsdruck zu addieren. So entspricht beispielsweise der auf einen Taucher wirkende Wasserdruck in einem ruhenden Gewässer der Summe

aus dem Luftdruck, der auf die Gewässeroberfläche wirkt,

+ dem hydrostatischen Druck des Wassers selbst.

Beispiele

  • Für Taucher ist es wichtig zu wissen, welchem Druck ihre Körpergase (Stickstoff) ausgesetzt sind, um die Taucherkrankheit zu vermeiden.
  • Ein Bathyscaph muss einem besonders hohen hydrostatischen Druck standhalten.
  • Wassertürme nutzen den hydrostatischen Druck, um den für die Versorgung der Endverbraucher notwendigen Leitungsdruck zu erzeugen.
  • In der Hydrogeologie kann sich nach dem Darcy-Gesetz eine Strömung zwischen zwei Punkten nur dann einstellen, wenn die Druckdifferenz verschieden von der Differenz der hydrostatischen Drücke an den beiden Punkten ist.
  • Ein Heber ist ein Gerät oder eine Einrichtung, mit der man eine Flüssigkeit aus einem Behälter über den Behälterrand in einen tiefer gelegenen Behälter umfüllen oder ins Freie entleeren kann, ohne den Behälter umzukippen und ohne dass er ein Loch oder einen Auslass unter dem Flüssigkeitsspiegel hat.

Gravitationsdruck in Planeten, Monden, Asteroiden und Meteoriten

Tiefenabhängigkeit von g

Mit zunehmender Tiefe kann $ g $ nicht mehr als konstant betrachtet werden. Wenn die Form des Himmelskörpers durch eine Kugel mit Radius $ R $ beschrieben und die Dichte als konstant betrachtet wird, lässt sich der Druck wie folgt berechnen:

$ p(h) = \int_{0}^{h} \rho \, g(R-r) \,\mathrm dr $ .

Der Ortsfaktor $ g(r) $ folgt aus dem Newtonschen Gravitationsgesetz:

$ g(r) = G \frac{M(r)}{r^2} $,

wobei $ M(r) $ die Masse innerhalb einer konzentrischen Kugel innerhalb des Himmelskörpers und $ M = M(R) $ dessen Gesamtmasse angibt. Mit der Formel für das Kugelvolumen $ V= \tfrac{4}{3} \pi R^3 $ ergibt sich für den Druck im Zentrum:

$ p_\text{Z} = p(R) = \frac{3}{8}\frac{G M^2}{\pi R^4} $.

Begrenzung der Größe eines Himmelskörpers aufgrund der Druckfestigkeit

Verschiedene Materialien weisen eine unterschiedliche Druckfestigkeit auf. Das Gleichsetzen von $ p_\mathrm Z $ und dem Maximaldruck $ p_\mathrm{max} $ führt zu einer Gleichung, die sich nach $ R $ auflösen lässt. Der resultierende Wert

$ R_\mathrm{max} = \frac{\sqrt{6 p_\mathrm{max}}}{2 \rho \sqrt{\pi G}} $

gibt den maximalen Radius an, den ein homogener, kugelförmiger Himmelskörper besitzen darf, um die Druckfestigkeit des Materials nicht zu überschreiten, also um nicht von der eigenen Masse zerdrückt zu werden.

Maximale Radien für verschiedene Materialien

Für den sehr hypothetischen Fall eines vollständig aus Styropor bestehenden Himmelskörpers ($ \rho = 20 \,\mathrm{\frac{kg}{m^3}} $ und $ p_\mathrm{max} = 150\,\mathrm{kPa} $) würde sich ein Radius von rund $ 1600\,\mathrm{km} $ ergeben (zum Vergleich: der Radius des Erdmondes beträgt rund $ 1700\,\mathrm{km} $). Für Granit beträgt der Radius rund $ 380\,\mathrm{km} $ und für Basalt $ 550\,\mathrm{km} $ . Eine Schlussfolgerung ist, dass Himmelskörper mit einem Radius deutlich größer als dem der Erde nicht aus einem einzigen festen Material bestehen können (Diamant: $ R_\mathrm{max} = 7600\,\mathrm{km} $).

Gravitationsdruck in Sternen

Sterne im Gleichgewicht

Einen Spezialfall des hydrostatischen Drucks stellt der Gravitationsdruck in Sternen dar. Dieser resultiert aus der den Stern kontrahierenden Schwerkraft. Demgegenüber wirkt z. B. der Strahlungsdruck als den Stern expandierende Kraft. Bei einem stabilen Stern stellt sich dabei ein Gleichgewicht aller Kräfte ein und der Stern hat eine stabile Form. Dies ist näherungsweise der Zustand von Sternen auf der Hauptreihe des Hertzsprung-Russell-Diagramms.

Beispiele für Sterne im Ungleichgewicht

Bei entstehenden Sternen, die sich zusammenziehen, überwiegt der Gravitationsdruck gegenüber der Summe aller Kräfte, die Gegendruck aufbauen. Beispiele für Gegendruck sind der kinetische Gasdruck des Gases selbst und bei anlaufender Fusionsreaktion der Strahlungsdruck durch alle auftretenden Strahlungsarten. Dadurch verändert sich der hydrostatische Druck innerhalb des entstehenden Sterns.

Bei einigen Klassen veränderlicher Sterne treten periodische oder transiente Änderungen der Sterndichte auf, wodurch sich die Materiemenge des Sterns, die innerhalb oder außerhalb einer Sphäre mit einem festen Radius liegt, verändert, und mit ihr auch der hydrostatische Druck bei einem bestimmten Radius vom Sternmittelpunkt aus.

Aufgrund des Sternwindes verlieren Sterne stetig Masse an die Umgebung. Auch dadurch ändert sich der hydrostatische Druck. Bei Hauptreihensternen ist diese Änderung allerdings sehr langsam.

In den Spätstadien des Sternenlebens kommt es ebenfalls zu Veränderungen im Sternaufbau, die sich auf den hydrostatischen Druck im Stern auswirken.

Siehe auch

Einzelnachweise

  1. Lew Dawidowitsch Landau, Jewgeni Michailowitsch Lifschitz: Statistische Physik. Teil I. Akademie Verlag, Berlin 1979/1987, ISBN 3-05-500069-2, S. 70.
en:Pascal's law

fr:Principe de Pascal


Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.