Sternwind

Sternwind

Sichtbare Stoßfront (Bow Shock) des Orionnebels (von rechts) an der Sternwind-Blase des jungen Sterns LL Orionis.

Sternwind ist ein kontinuierlicher Strom von Materie, der von der Oberfläche von Sternen ausgeht. Die Windgeschwindigkeiten betragen je nach Sterntyp zwischen einigen zehn und mehreren 1000 km/s, die beobachteten Massenverlustraten reichen von $ 10^{-14} $ bis $ 10^{-3} $ Sonnenmassen pro Jahr.

Sternwinde sind ein elektrisch leitfähiges Plasma und wechselwirken deshalb entsprechend mit Magnetfeldern. Sie können das Magnetfeld des Sterns weit nach außen tragen und können interstellare Materie und kosmische Strahlung aus der näheren Umgebung des Sterns fernhalten. Dabei gebildete blasenförmige Strukturen um den Stern werden Astrosphären genannt, im Fall massiver Sterne auch stellar wind bubbles (englisch für „Sternwind-Blasen“). Die Astrosphäre der Sonne ist die Heliosphäre.

Formen von Sternwinden

Es gibt verschiedene Formen von Sternwinden, die sich durch ihren Antriebsmechanismus unterscheiden.

  • Winde kühler Sterne wie die von roten Riesen bestehen aus neutralen Atomen und Molekülen wie Kohlenstoffmonoxid, Silikaten und Ähnlichem. Diese staubreichen Winde sind mit nur einigen zehn km/s vergleichsweise langsam. Die Materie wird in der Atmosphäre des Roten Riesen durch Schockwellen aufgrund von Pulsationen beschleunigt. In einem gewissen Abstand vom Stern, bei dem die Temperatur hinreichend abgesunken ist, kondensiert das Gas zu Staub. Die antreibende Kraft ist der Strahlungsdruck auf die Moleküle des Staubes durch Streuung. Die Massenverlustraten können mit bis zu $ 10^{-6} $ Sonnenmassen pro Jahr sehr hoch sein. Solche Winde treten in den Spätphasen der Sternentwicklung auf und sind zum Beispiel für die Entstehung der planetarischen Nebel verantwortlich.[1]
  • Bei sonnenähnlichen Hauptreihensternen besteht der Wind aus geladenen Teilchen, meist Protonen und Elektronen. Solche Winde wie der Sonnenwind werden hauptsächlich durch die extremen Temperaturen der Korona von einigen Millionen Kelvin angetrieben. Der dabei wirkende Gasdruck beschleunigt den Wind auf einige hundert km/s. Gegenwärtig verliert die Sonne etwa $ 10^{-14} $ Sonnenmassen pro Jahr, ihr Wind hat daher keinen Einfluss auf den Entwicklungsweg der Sonne.[2] Bei Hauptreihensternen mit einer äußeren Konvektionschicht bildet sich eine Korona. Diese dünne Atmosphäre wird (durch noch nicht vollständig verstandene Prozesse) auf mehrere Millionen Kelvin erwärmt, und in der Folge erreichen die Bestandteile des Plasmas eine Wärmebewegung, die zum Abströmen als Sternwind ausreicht.
  • Winde heißer Sterne, etwa ab einer Oberflächentemperatur von 10.000 K, haben dieselbe chemische Zusammensetzung wie die Sternoberfläche selbst. Die meisten Atome sind hierbei einfach oder mehrfach ionisiert. Diese Winde können einige tausend km/s schnell werden. Winde heißer Sterne werden ebenfalls durch den Strahlungsdruck des Zentralsterns angetrieben, aber anders als bei kühlen Winden wirkt er nicht durch Streuung des kontinuierlichen Sternspektrums, sondern durch Absorption in Spektrallinien im ultravioletten Bereich.[3] Die Massenverlustraten reichen von $ 10^{-10} $ in Hauptreihensternen über $ 10^{-6} $ in Überriesen bis hin zu $ 10^{-3} $ in Wolf-Rayet-Sternen. Der extreme Stern η Carinae hat während eines etwa zwanzigjährigen Ausbruchs um 1840 etwa eine halbe Sonnenmasse pro Jahr verloren. Der Sternwind heißer Sterne ist hochgradig inhomogen. Die Inhomogenität kann bei windakkretierenden Röntgendoppelsternen indirekt beobachtet werden. Dabei wird der Sternwind von einem kompakten Stern, einem Weißen Zwerg, einem Neutronenstern oder einem Schwarzen Loch, eingefangen und über eine Akkretionsscheibe auf den Stern transferiert. Beim Aufprall auf der Oberfläche eines Weißen Zwerges oder Neutronensterns wird Röntgenstrahlung als thermische Strahlung frei, die direkt proportional zur Menge des akkretierten Windes ist. Dies ermöglicht, die klumpige Struktur des Sternwinds heißer Sterne zu analysieren.[4]
  • Bei manchen Sterntypen, die Material akkretieren, wie etwa die T-Tauri-Sterne, kann sich ein Wind in Form eines Jets bilden. Dabei wird ein Teil des auf den Stern stürzenden Materials durch ein Magnetfeld abgelenkt und längs der Polachse weggeschleudert.[5]
  • Die Sternwinde wechselwirkender Doppelsternsysteme können mit hoher Geschwindigkeit kollidieren und dabei Radio-, Röntgen- und Gammastrahlung erzeugen. Solche Systeme nennt man Colliding-Wind Binary.

Einfluss auf die Entwicklung des Sterns

Während Sternwinde im Hauptreihenstadium keinen großen Einfluss auf die Entwicklung des Sterns haben, werden die späteren Stadien davon entscheidend beeinflusst. Viele massereiche Sterne entwickeln sich am Ende nur deswegen zu Weißen Zwergen und explodieren nicht als eine Supernova, weil sie vorher ausreichend Masse verloren haben.

Weblinks

 <Lang> Commons: Sternwind – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. H. J. Habing, H. Olofsson: Asymptotic Giant Branch Stars (Astronomy and Astrophysics Library). Springer, Berlin 2003, ISBN 0-387-00880-2.
  2. H. Scheffler, H. Elsässer: Physik der Sonne und der Sterne. Bibliographisches Institut, Mannheim 1990, ISBN 3-411-14172-7.
  3. R. Kippenhahn, A.Weigert: Stellar Structure and Evolution (Astronomy and Astrophysics Library). Springer Verlag GmbH, Mannheim 1994, ISBN 978-3-540-50211-1.
  4. Anabella T. Araudo, Valenti Bosch-Ramon, Gustavo E. Romero: Transient gamma-ray emission from Cygnus X-3. In: Astrophysics. Solar and Stellar Astrophysics. 2011, arxiv:1104.1730.
  5. L. Hartmann: Accretion Processes in Star Formation (Cambridge Astrophysics). Cambridge University Press, Cambridge 2001, ISBN 978-0-521-78520-4.

Diese Artikel könnten dir auch gefallen



Die letzten News


20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.
18.12.2020
Galaxienhaufen, gefangen im kosmischen Netz
Mehr als die Hälfte der Materie in unserem Universum entzog sich bislang unserem Blick.
18.12.2020
Zwei planetenähnliche Objekte, die wie Sterne geboren wurden
Ein internationales Forschungsteam unter der Leitung der Universität Bern hat ein exotisches System entdeckt, das aus zwei jungen planetenähnlichen Objekten besteht, die sich in sehr grosser Entfernung umkreisen.
16.12.2020
Neuen Quantenstrukturen auf der Spur
Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien.