Austrittspupille

Austrittspupille

Die Artikel Apertur, Numerische Apertur, Aperturblende, Gesichtsfeldblende, Leuchtfeldblende, Fotografische Blende, Blende (Optik) und Irisblende überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. Kai Kemmann (Diskussion) 11:34, 5. Apr. 2017 (CEST)
Die Artikel Kritische Blende, Eintrittspupille, Austrittspupille, Blendenzahl und Öffnungsverhältnis überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. Kai Kemmann (Diskussion) 11:34, 5. Apr. 2017 (CEST)

Als Austrittspupille (auch Augenkreis, Ramsden'scher Kreis oder Biot'scher Kreis)[1] bezeichnet man das bildseitige Bild der Aperturblende eines optischen Systems. Sie ist der Eintrittspupille konjugiert. Bei optischen Geräten zur direkten visuellen Beobachtung – z. B. Teleskopen und Ferngläsern – wird als Austrittspupille oder Austrittsblende der Durchmesser des Strahlenbündels bezeichnet, der das Okular verlässt.

Objektive

Der Abstand der Austrittspupille zur Bildebene bestimmt den Winkel θ, in dem die Hauptstrahlen auf der Bildebene auftreffen:

$ \theta = 90^\circ - \arctan \left(\frac {\text{Abstand}_\text{Bildpunkt zu Bildzentrum}}{\text{Abstand}_\text{Austrittspupille zu Bildebene}} \right) $

Bei bildseitig und beidseitig telezentrischen Objektiven liegt die Austrittspupille im Unendlichen, somit wird in der gesamten Bildebene $ \theta = 90^\circ $ d. h. die Hauptstrahlen treffen überall senkrecht auf die Bildebene.

Umgekehrt liegt bei objektseitig telezentrischen Objektiven die Austrittspupille in der Brennebene und damit sehr nahe der Bildebene. Die Hauptstrahlen treffen daher mit zunehmendem Abstand vom Bildzentrum rasch sehr flach auf die Bildebene. Würde sich die Bildebene ebenfalls in der Brennebene befinden, würde $ \theta = 0^\circ $ d. h. die Hauptstrahlen würden parallel zur Bildeben verlaufen und daher nie auf diese treffen. Daher lassen sich mit objektseitig telezentrischen Systemen nur im Nahbereich scharfe Abbildungen erzielen.

Geräte für visuelle Beobachtungen

Wie erwähnt, wird bei Teleskopen und Ferngläsern auch der Durchmesser des Strahlenbündels, der am Okular austritt, als Austrittspupille (Austrittsblende) bezeichnet. Wenn die Vergrößerung eines Instrumentes erhöht wird, so verkleinert sich die Austrittspupille am Okular.

Ermitteln der Größe der Austrittspupille

Man richtet das Instrument auf eine helle Fläche, am besten in den Taghimmel, jedoch nicht in unmittelbare Sonnennähe. Es wird auf ein möglichst weit entferntes Objekt scharfgestellt. Bei Teleskopen des Typs Maksutov oder Schmidt-Cassegrain ist zu beachten, dass sich deren Brennweite je nach Fokuslage ändert. Deshalb sollten Teleskope dieses Typs auf „unendlich“ fokussiert sein. Die Größe der Austrittspupille kann leicht grob ermittelt werden, wenn im Abstand von etwa 30 cm auf das Okular des Instrumentes geblickt wird. Die Austrittspupille erscheint als helles Lichtscheibchen im Okular.

Genaueres Ermitteln der Größe der Austrittspupille

Soll die Austrittspupille genauer gemessen werden, wird eine Mattscheibe vor das Okular gehalten. Bei genügend Licht kann ein dünnes Blatt Millimeterpapier genügen. Man ändert die Entfernung der Mattscheibe bzw. des Papiers zum Okular so lange, bis sich ein helles Scheibchen mit scharf gezeichnetem Rand abbildet. Bei der Verwendung von Millimeterpapier erhält man durch Abzählen der Millimeterstriche den Wert für die Größe der Austrittspupille (in Millimetern). Dieser Wert sollte so groß sein wie die Pupille des Auges – 1 bis 2 mm bei Tageslichtsehen, zwischen 6 und 8 mm bei Nachtsehen.

Ist die Austrittspupille nicht der Eintrittspupille des Auges angepasst, erscheint ein Objekt mit dem optischen Gerät betrachtet dunkler als mit bloßem Auge.

Die Pupille des Auges bildet die Aperturblende des Auges. Eine kleine Ausgangspupille eines optischen Geräts leuchtet sie nicht vollständig aus. Sie begrenzt entsprechend die Apertur und reduziert die beugungbegrenzte Auflösung.

Sinnvolle Austrittspupillen

Bei der Austrittspupille eines Instrumentes ist zu beachten, dass sich die Pupille eines jungen, gesunden Auges maximal auf etwa 7 mm erweitert, und andererseits auf der Netzhaut Austrittspupillen kleiner 1 mm kaum noch einen Wahrnehmungsgewinn bringen. 0,5 mm stellen hier die absolute Grenze dar, die jedoch nur bei gutem Auge und sehr gutem Instrument noch nutzbar sind.

Die Austrittspupille begrenzt zum Auge hin sowohl die minimale, als auch die maximal nutzbare Vergrößerung eines optischen Instruments.

Die Austrittspupille eines gegebenen Okulars wird bei Teleskopen und Ferngläsern vom Öffnungsverhältnis (Brennweite/Objektivöffnung) des Instruments bestimmt.

Der Durchmesser der Austrittspupille AP (in mm) errechnet sich als Quotient aus der Objektivöffnung D (in mm) und der Vergrößerung V eines Instruments:

$ AP = \frac{D}{V} $

Die geometrische Lichtstärke LG eines optischen Instruments ist als Quadrat des Durchmessers der Austrittspupille (AP²) festgelegt. Beispiel: Ein Fernglas 8×40 (8× Vergrößerung und 40 mm Eintrittspupille) hat eine geometrische Lichtstärke von 25, entsprechend:

$ L_\mathrm{G} = \left(\frac{40}{8}\right)^2 $

Weblinks

Einzelnachweise

  1. Grundzüge der theorie der optischen instrumente nach Abbe (1904)

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.