Autokorrelator

Autokorrelator

Ein Autokorrelator ist ein Gerät zur Bestimmung der Autokorrelationsfunktion eines Eingangssignals. Zu den wichtigsten Realisierungen eines solchen Gerätes zählen der optische Autokorrelator, der es erlaubt die Dauer von ultrakurzen Lichtimpulsen zu bestimmen. Es gibt aber auch Realisierungen in digitaler Elektronik, die z. B. dazu eingesetzt werden in der Fluoreszenz-Korrelations-Spektroskopie oder der Dynamischen Lichtstreuung die Dynamik diffundierender Teilchen zu vermessen.

Allgemeine Beschreibung

Ein Autokorrelator berechnet aus einem Eingangssignal I(t) dessen Autokorrelationsfunktion

$ G(\tau)=\langle I(t)\cdot I(t+\tau)\rangle:=\lim\limits_{T\rightarrow\infty}\frac{1}{T}\int\limits_0^TI(t)\cdot I(t+\tau)\;\mathrm{d}t $

Diese gibt Aufschluss über die Selbstähnlichkeit des Signals I(t) mit einer Verzögerung τ und erlaubt es so auch solche Signale zu analysieren, die im Rauschen verborgen (z. B. in der Fluoreszenz-Korrelations-Spektroskopie, da für die Autokorrelationsfunktion von weißem Rauschen gilt $ g(\tau)\propto\delta(\tau) $), oder zu schnell für eine normale Detektion (siehe Optischer Autokorrelator) sind.

Optischer Autokorrelator

Hintergrund

Eine zeitliche Auflösung eines Lichtimpulses im Piko- oder Femtosekundenbereich ist mit Photodioden nicht möglich, da die Geschwindigkeit einer Photodiode durch die Rekombinationszeit der Elektron-Loch-Paare begrenzt wird, welche typischerweise größer als 100 Pikosekunden ist. Um einen Lichtimpuls zeitlich aufzulösen braucht man also Referenzprozesse, die kürzer als das zu messende Ereignis sind. Dies ist nur mit optischen Methoden möglich. In einem Autokorrelator wird der Impuls „mit sich selbst“ als Referenz gemessen.

Aufbau und Funktionsweise

Schematischer Aufbau eines Autokorrelators. BS: Strahlteiler, M1 und M2: Spiegel, M2 ist auf einer variablen Verzögerungsstrecke montiert, NC: Nichtlinearer Kristall zur Erzeugung der zweiten Harmonischen (SHG) (z. B. BBO), F: Filter der nur das frequenzverdoppelte Licht transmittiert, D: Detektor. rotes Signal ist Eingangssignal; blaues Signal entspricht detektiertes Signal

Das nebenstehende Bild zeigt eine mögliche Realisierung eines Autokorrelators. Er stellt im Prinzip ein Michelson-Interferometer dar. Der einfallende Impuls wird zunächst in einem Strahlteiler in zwei Teile aufgespalten. Diese durchlaufen unabhängig voneinander unterschiedliche Wege, und werden anschließend im Strahlteiler wieder zusammengeführt. Die vereinigten Impulse treffen auf einen nichtlinearen Kristall (z. B. BBO) in dem die Frequenzverdoppelte (zweite Harmonische) des einfallenden Lichtes erzeugt wird. Die Konversionseffizienz, also die Intensität der zweiten Harmonischen, hängt von der Intensität des Lichtes im Kristall ab. Diese hängt wiederum vom zeitlichen Versatz zwischen den beiden Impulse ab. Dieser Versatz wird durch einen Spiegel, der auf einer variablen Verzögerungsstrecke befestigt ist (in der Abbildung M2), eingestellt. Durch Messung der Intensität des frequenzverdoppelten Lichtes in Abhängigkeit vom zeitlichen Versatz wird somit die Autokorrelation des einfallenden Impulses gemessen. Hieraus lässt sich unter Annahme der zugrundeliegenden Impulsform die Dauer bestimmen.

Mathematische Beschreibung

Ein Impuls mit der zeitlichen Intensitätsverteilung $ I(t) $ wird zunächst in 2 Impulse aufgespalten, und wieder vereint. Da die Impulse unterschiedliche Wege durchlaufen, besitzen sie eine zeitliche Verzögerung $ \tau $ zueinander:

$ E_\mathrm{ges}(t) = E(t) + E(t-\tau) $.

Für die Intensität des frequenzverdoppelten Lichtes $ I_\mathrm{SH} $ im nichtlinearen Kristall gilt:

$ I_\mathrm{SH}(2 \omega,t,\tau) \propto \left[I_1(t) + I_1(t-\tau)\right]^2 $ wobei $ I_1 \propto \left| E_1 \right|^2 $ ist.

Der Detektor misst nun den zeitlichen Mittelwert der 2. Harmonischen $ S $, da seine Zeitkonstante $ T $ viel größer als die Pulsdauer ist:

$ S(\tau) \propto \frac{1}{T} \int \limits_0^T I_\mathrm{SH}(t,\tau) \mathrm{d}t $.

In einen Autokorrelator mit einem nicht interferierenden Strahlengang ergibt sich:

$ S(\tau) \propto\, \langle I^2\rangle + \langle I^2\rangle + 4\langle I(t) I(t-\tau)\rangle $.

Hierbei bedeuten die spitzen Klammern 〈·〉 den zeitlichen Mittelwert. Der letzte Summand stellt gerade die Autokorrelationsfunktion der zeitlichen Intensitätsverteilung des zu messenden Impulses dar. Unter Annahme der Impulsform lässt sich nun seine Dauer berechnen.

Würde der Puls nach der Überlagerung nicht in der Lichtfrequenz verdoppelt, so würde der Detektor ein Signal, das unabhängig von der zeitlichen Verzögerung $ \tau $ ist, messen. Man gewinnt damit also keine Informationen über die Intensität des Pulses. Kann im Gegensatz zu einem Autokorrelator der Verzögerungsweg sehr fein, langsam und reproduzierbar verstellt werden, wie z. B. bei einem FTIR-Spektrometer, ist Lichtfrequenzverdoppelung nicht notwendig und aus dem resultierenden Interferogramm lässt sich die Pulsdauer ebenfalls bestimmen.

Elektronischer Autokorrelator

Linearer Korrelator

Schematischer Aufbau eines digital-elektronischen linearen Korrelators

Ein elektronischer Autokorrelator berechnet aus einem analogen oder digitalen Eingangssignal I(t) dessen Autokorrelationsfunktion. In vielen Bereichen werden die Eingangssignale heute digitalisiert und dann mit einem sog. linearen oder Multi-τ-Autokorrelator weiterverarbeitet. Der grundsätzliche Aufbau eines linearen Autokorrelators ist rechts gezeigt. Das Eingangssignal wird um diskrete Schritte $ \tau_k=k\cdot\tau_\text{min}=\tau_\text{min}, 2\tau_\text{min}, 3\tau_\text{min}, ... $ ($ k\in\mathbb{N} $) verzögert und mit dem unverzögerten Eingangssignal multipliziert. Das Ergebnis wird aufsummiert. So wird eine diskrete Schätzung des Autokorrelationsfunktion ausgeführt:

$ \hat{G}(\tau_k)=\frac{1}{N}\sum\limits_{n=1}^NI_n\cdot I_{n+k} $

Dabei wird das kontinuierliche Eingangssignal in N diskrete Schritte In zerlegt. Die hintereinander geschalteten Verzögerungsstufen um $ \tau_\text{min} $ können mit Hilfe eines Schieberegisters realisiert werden. Für die ersten Realisierungen und spezielle Anwendungen (z. B. hohe Geschwindigkeit) dieses Konzepts wurden spezielle Microchips (ASIC) entwickelt[1][2], spätere Realisierungen verwenden FPGAs und/oder digitale Signalprozessoren (DSPs). In den letztgenannten Architekturen sind sogenannte Multiply-Accumulate-Befehle oder Blöcke verfügbar, mit denen die Autokorrelation sehr effizient erledigt werden kann, da sie genau den rechts dargestellten Einzelschritt (zwei Zahlen multiplizieren und dann aufsummieren) realisieren.

Multi-τ Korrelator

Eine Erweiterung des linearen Korrelators stellt der sog. multi-τ-Korrelator dar[3], der mehrere lineare Stufen kombiniert. Zwischen den Stufen wird das Signal In über (typischerweise 2) Zeitperioden aufsummiert. Die nächste Stufe korreliert dann das Signal $ I_n'=I_n+I_{n-1} $. So wird eine semi-logarithmische Verteilung der Verzögerungen τk erreicht und es kann mit relativ wenig Hardware-Aufwand ein großer Verzögerungsbereich abgetastet werden.

Literatur

  • Wolfgang Demtröder: Laserspektroskopie, 5. Auflage, Springer-Verlag, 2007

Einzelnachweise

  1. M. Engels, B. Hoppe, H. Meuth, and R. Peters: A single chip 200 MHz digital correlation system for laser spectroscopy with 512 correlation channels. In: ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999. Band 5, 1999, S. 160–163, doi:10.1109/ISCAS.1999.777535.
  2. Steven B. Kaplan: Hybrid technology digital correlation spectrometers for astronomy and communications. In: Proceedings of the 22nd International Symposium on Superconductivity (ISS 2009). Band 470, Nr. 20, 2009, S. 1538–1545.
  3. K. Schatzel: New concepts in correlator design. In: Inst. Phys. Conf. Ser. Band 77, 1985, S. 175–184.

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.