Riesig, rot und voller Flecken

Riesig, rot und voller Flecken

Physik-News vom 13.07.2020

Etwa acht Prozent der Roten Riesen sind von sonnenfleckenähnlichen, dunklen Gebieten überzogen. Sie rotieren schneller als andere Sterne dieser Art.

Dunkle, zum Teil riesige Sternflecken an der Oberfläche sind unter Roten Riesensternen verbreiteter als bisher angenommen. In der heutigen Ausgabe der Fachzeitschrift Astronomy & Astrophysics berichten Forscherinnen und Forscher unter Leitung des Max-Planck-Instituts für Sonnensystemforschung (MPS) in Göttingen, dass etwa acht Prozent der Roten Riesen solche Flecken zeigen. Sie sind Ausdruck starker Magnetfelder an der Oberfläche des Sterns. Die Magnetfelder entstehen tief im Innern in einem Prozess, der unter anderem Konvektion und eine schnelle Eigendrehung des Sterns voraussetzt.


Diese Grafik zeigt das Leben eines sonnenähnlichen Sterns von dessen Geburt auf der linken Seite bis zu seiner Entwicklung zu einem Roten Riesen auf der rechten Seite. (Ausführliche Bildunterschrift weiter unten)

Publikation:


Patrick Gaulme et al.
Active red giants: close binaries versus single rapid rotators
Astronomy & Astrophysics, Volume 639, A63 (July 2020)

DOI: 10.1051/0004-6361/202037781



Obwohl Rote Riesen gemeinhin als langsam rotierende Sterne gelten, bilden diejenigen mit Sternflecken offenbar eine Ausnahme. Die aktuelle, umfassende Analyse identifiziert verschiedene Gründe für deren ungewöhnliche Drehfreude: vom erzwungenen Gleichtakt mit einem anderen, eng benachbarten Stern über das Verschlucken eines Sterns oder Planeten bis hin zu einer schnellen Ausgangsdrehgeschwindigkeit in einer frühen Entwicklungsphase.

Zu den auffälligsten Eigenschaften der Sonne gehören die Sonnenflecken, dunkle Bereiche auf ihrer ansonsten hellen Oberfläche, die zum Teil sogar ohne Vergrößerung von der Erde aus sichtbar sind. Auch zahlreiche andere Sterne, die sich wie die Sonne in der Blütezeit ihres Lebens befinden, sind von Flecken überzogen. Bei Roten Riesen hingegen, die sich in einem fortgeschrittenen Stadium der Sternentwicklung befinden, galten sie bisher als Seltenheit. Die Ursache für diesen Unterschied findet sich im Innern der Sterne. Aus dem Zusammenspiel von elektrisch leitenden Plasmaströmen und der Rotation des Sterns entstehen in einem Dynamoprozess die Magnetfelder des Sterns und setzen sich bis an seine Oberfläche fort. An manchen Stellen verhindern besonders starke Magnetfelder, dass heißes Plasma nach oben strömt. Diese Regionen erscheinen dunkel und werden als Sternflecken bezeichnet.


Wie Rote Riesen mit Flecken entstehen.

„Damit sich an der Oberfläche eines Sterns Magnetfelder und Sternflecken ausbilden, sind Rotation und Konvektion entscheidende Zutaten“, erklärt Dr. Federico Spada vom MPS, Ko-Autor der neuen Studie. „Sterne, bei denen sich die Konvektion in einer außenliegenden Schicht abspielt, haben das Potential, durch Dynamoprozesse Magnetfelder an der Oberfläche zu erzeugen. Diese magnetische Aktivität ist nur dann messbar, wenn der Stern schnell genug rotiert“, fügt er hinzu. Bisher hatten Forscherinnen und Forscher angenommen, dass fast alle Roten Riesen eher gemächlich um die eigene Achse rotieren. Schließlich dehnen sich Sterne, wenn sie sich gegen Ende ihres Lebens zu Roten Riesen entwickeln, dramatisch aus. Ihre Eigenrotation verlangsamt sich dadurch wie bei einem Pirouetten drehenden Eiskunstläufer, der die Arme ausstreckt. Die neue Studie unter Leitung des MPS und der New Mexiko State University (USA) zeigt nun ein anderes Bild. Etwa acht Prozent der beobachteten Roten Riesen drehen sich so schnell, dass Flecken entstehen können.

Das Forscherteam durchforstete die Messdaten von etwa 4500 Roten Riesen, die das Weltraumteleskop Kepler von 2009 bis 2013 aufgenommen hat, nach Hinweisen auf Flecken. Solche Flecken mindern die Lichtmenge, die ein Stern ins All sendet. Da sie sich in der Regel über mehrere Monate nur leicht verändern, drehen sie sich nach und nach aus dem Blickfeld des Teleskops – und erscheinen dann nach einiger Zeit wieder. Dies erzeugt typische, regelmäßig wiederkehrende Helligkeitsschwankungen.



Im zweiten Schritt gingen die Wissenschaftlerinnen und Wissenschaftler der Frage nach, warum die fleckigen Riesen sich so schnell drehen. Woher nehmen sie die nötige Energie? „Um diese Frage zu beantworten, mussten wir ganz genau hinsehen, möglichst viele Eigenschaften der Sterne bestimmen und daraus ein Gesamtbild zusammensetzen“, so MPS-Wissenschaftler Dr. Patrick Gaulme, Erstautor der Studie. Am Apache Point Observatory in New Mexiko (USA) untersuchten die Forscherinnen und Forscher etwa, wie sich die Wellenlängen des Sternlichtes einiger Sterne mit der Zeit verändern. So sind Rückschlüsse auf ihre genaue Bewegung möglich. Zudem schaute das Team auf schnelle Helligkeitsschwankungen, die den langsameren, durch Sternflecken verursachten überlagert sind. Die schnelleren Schwankungen sind Ausdruck von Druckwellen, die sich durch das Innere eines Sterns bis zu seiner Oberfläche ausbreiten. Ihre Analyse erlaubt es, viele innere Eigenschaften des Sterns zu bestimmen wie etwa das Gewicht und das Alter.

Wie sich zeigte, gehören etwa 15 Prozent der fleckigen Riesen zu Doppelsternsystemen, die auch einen weiteren, kleineren und somit drehfreudigen Stern beherbergen. „In solchen Systemen gleichen sich die Rotationsgeschwindigkeiten beider Sterne mit der Zeit an, bis sie sich wie zwei Paarläufer beim Eiskunstlauf im Gleichtakt drehen“, so Gaulme. Der zunächst langsamere Rote Riese gewinnt dadurch an Schwung.


Info
Ausführliche Beschreibung zum Titelbild

Diese Grafik zeigt das Leben eines sonnenähnlichen Sterns von dessen Geburt auf der linken Seite bis zu seiner Entwicklung zu einem Roten Riesen auf der rechten Seite. Links ist der Stern als Protostern zu sehen, während seiner Entstehung eingehüllt in eine staubige Materiescheibe. Später wird er zu einem Stern ähnlich unserer Sonne. Nachdem er den größten Teil seines Lebens in diesem Entwicklungsstadium verbracht hat, beginnt der Kern des Sterns sich nach und nach aufzuheizen. Der Stern dehnt sich aus und wird röter, bis er sich in einen Roten Riesen verwandelt hat.
Nach diesem Stadium wird der Stern seine äußere Hülle in seine Umgebung abstoßen und zu einem Objekt werden, das unter dem Namen Planetarischer Nebel bekannt ist. Der Kern des Sterns selbst wird abkühlen und zu einem kleinen, dichten Überbleibsel werden, einem Weißen Zwerg.

Die Grafik ist nur schematisch; Alter, Größen und Farben sind geschätzt und nicht maßstabsgetreu dargestellt. Der Protostern, weit links in der Grafik, kann etwa 2000 mal größer sein als unsere Sonne. Der Rote Riese, weit rechts in der Grafik, kann etwa 100 mal größer sein als die Sonne.



Die anderen fleckigen Riesen, etwa 85 Prozent, sind Einzelkämpfer – und rotieren dennoch schnell. Die leichteren von ihnen, deren Gewicht in etwa dem der Sonne entspricht, sind wahrscheinlich im Laufe ihrer Entwicklung mit einem weiteren Stern oder einem Planeten verschmolzen und haben dadurch Fahrt aufgenommen. Die etwas schwereren, deren Gewicht zwischen dem zweifachen und dreifachen Gewicht der Sonne liegt, blicken auf einen anderen Werdegang zurück. In der Blütezeit ihres Lebens, bevor sie zu Roten Riesen wurden, verhinderte ihr innerer Aufbau das Entstehen eines globalen Magnetfeldes, das Sternteilchen nach und nach vom Stern wegleitet. Anders als bei ihren magnetischen Kollegen, die sich im Laufe der Zeit deshalb immer langsamer drehen, hat sich ihre Rotation wohl nie deutlich abgebremst. Sie rotieren auch als Rote Riesen noch fast schnell wie in jungen Jahren.

"Die Beobachtung, dass einige Rote Riesen Flecken haben, hat uns zu drei verschiedenen Gruppen schnell rotierender Sterne geführt“, so Gaulme zusammenfassend. „Es ist also kein Wunder, dass das Phänomen weiter verbreitet ist, als wir bisher dachten", fügt er hinzu.


Info
Förderung

Diese Forschung wurde vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) im Rahmen des PLATO Data Center grant 50OO1501 unterstützt.

Studien wie die vorliegende werfen Licht auf die Entwicklung der Rotation und der magnetischen Aktivität bei Sternen und auf ihr komplexes Zusammenspiel, einschließlich der Auswirkungen auf die Bewohnbarkeit der Planetensysteme, die sie beherbergen könnten. Diese gehören zu den Hauptzielen der ESA-Mission PLATO, deren Start für Ende 2026 erwartet wird. "Wir freuen uns auf die PLATO-Mission; mit ihren einzigartigen Langzeitbeobachtungen werden wir in der Lage sein, unsere Studie auf andere Regionen der Milchstraße auszudehnen", schließt Spada.

Diese Newsmeldung wurde mit Material des Max-Planck-Institut für Sonnensystemforschung via Informationsdienst Wissenschaft erstellt



   26 Meldungen
11.08.2020
Astrophysik - Elektrodynamik - Klassische Mechanik
Klein und agil im All
UWE-4, der Experimentalsatellit der Uni Würzburg, hat mit seinem Elektro-Antrieb neue Maßstäbe gesetzt: In einer weltweiten Premiere für Kleinst-Satelliten hat er seine Umlaufbahn gezielt verändert.
13.07.2020
Astrophysik - Klassische Mechanik
Riesig, rot und voller Flecken
Etwa acht Prozent der Roten Riesen sind von sonnenfleckenähnlichen, dunklen Gebieten überzogen. Sie rotieren schneller als andere Sterne dieser Art.
01.07.2020
Atomphysik - Klassische Mechanik
100 Femtonewton nachgewiesen - Das Gewicht eines 0,1 Billionstels einer Tafel Schokolade
Experimentalphysiker messen kleinste Kräfte in der Wechselwirkung zwischen einzelnen Atomen.
01.06.2020
Klassische Mechanik
Wissenschaftler entdecken neue Formen von Feldspat
In Hochdruckexperimenten hat ein Forschungsteam neue Formen des weit verbreiteten Minerals Feldspat entdeckt.
31.01.2019
Klassische Mechanik
Meteoriteneinschläge im Labor - Simulationsexperimente zeigen Strukturänderung von Mineralien
Ein deutsch-amerikanisches Forschungsteam hat Meteoriteneinschläge im Labor simuliert und die resultierenden Strukturänderungen in zwei weit verbreiteten Feldspat-Mineralien live mit Hilfe von Röntgenlicht verfolgt.
24.01.2019
Astrophysik - Klassische Mechanik
Wie Gaswolken zu Sonnen zerfallen
Mit dem ALMA-Observatorium in Chile hat eine Gruppe von Astronomen unter der Leitung von Henrik Beuther vom Max-Planck-Institut für Astronomie in Heidelberg die bisher detailliertesten Beobachtungen dazu gemacht, wie eine riesige Gaswolke in dichtere Teilregionen zerfällt, die dann als Geburtsstätten von Sternen dienen.
14.01.2019
Klassische Mechanik
Mit Satelliten den Eisverlust von Gletschern messen
Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.
10.01.2019
Klassische Mechanik
Wie Gletscher gleiten
Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt.
17.12.2018
Klassische Mechanik - Teilchenphysik
Wenn sich Atome zu nahe kommen
„Dass ich erkenne, was die Welt im Innersten zusammenhält“ - dieses Faust’sche Streben ist durch die Rasterkraftmikroskopie möglich geworden.
12.12.2018
Klassische Mechanik - Quantenoptik
Bose-Einstein-Kondensate können Gravitationswellen derzeit wohl kaum nachweisen
Die von Schwarzen Löchern in den Tiefen des Weltraums ausgelösten Gravitationswellen erreichen zwar durchaus die Erde.
21.11.2018
Astrophysik - Klassische Mechanik
Wie aus Staub Planeten entstehen
Physiker aus Braunschweig und Japan simulieren im Labor Prozesse bei der Planetenentstehung: Staubklumpen gelten als Baustoff bei der Entstehung von Planeten.
01.11.2018
Klassische Mechanik
Mikrobeben-Serie vor einem Erdbeben in der Nähe von Istanbul als Frühwarnzeichen?
Eine neue Studie unter der Leitung von Peter Malin und Marco Bohnhoff vom Deutschen GeoForschungsZentrum GFZ analysiert mögliche Vorläuferereignisse von Erdbeben nahe Istanbul.
31.10.2018
Astrophysik - Klassische Mechanik
Detailreichste Beobachtungen von Material im Orbit nahe einem Schwarzen Loch
Das überaus empfindliche GRAVITY-Instrument der ESO hat die seit langem bestehende Annahme, dass sich im Zentrum der Milchstraße ein supermassereiches Schwarzes Loch befindet, weiter bestätigt.
23.10.2018
Astrophysik - Klassische Mechanik
Planeten und Asteroiden wiegen
Ein Forscherteam des “International Pulsar Timing ArrayKonsortiums unter der Leitung von Wissenschaftlern am Bonner Max-Planck-Institut für Radioastronomie hat über Zeitreihenmessungen von Pulsaren die Massen des Zwergplaneten Ceres und anderer Asteroiden im Sonnensystem bestimmt.
04.10.2018
Astrophysik - Klassische Mechanik
Wenn Centauren die Erde bedrohen
Die Astrophysiker Mattia Galiazzo und Rudolf Dvorak von der Universität Wien untersuchten gemeinsam mit Elizabeth A.
14.09.2018
Astrophysik - Klassische Mechanik
Widerlegt eine Zwerg-Galaxie die MOND-Theorie?
W
06.08.2018
Astrophysik - Klassische Mechanik
Abstürzende Monde: Was bei der Kollision der frühen Erde mit ihren Begleitern passierte
Internationales Forscherteam unter Beteiligung der Universität Tübingen simuliert ein mögliches Schicksal der sogenannten Moonlets
10.04.2018
Astrophysik - Klassische Mechanik - Optik
ILA 2018: Sicher, schnell und kostengünstig ins All
Der erdnahe Orbit gleicht einem stetig wachsenden Schrottplatz.
21.03.2018
Astrophysik - Klassische Mechanik
Forscher des Fraunhofer FHR begleiten Wiedereintritt der chinesischen Raumstation Tiangong-1
Die chinesische Raumstation Tiangong-1 wird in wenigen Wochen in die Erdatmosphäre eintreten und zu einem großen Teil verglühen.
26.02.2018
Klassische Mechanik - Optik
Erste Messung der Erdgravitation mit einer transportablen optischen Uhr
Großes Potential für vereinheitlichte Messungen der Erdoberfläche
28.08.2017
Astrophysik - Klassische Mechanik
Turbulente Bewegungen in der Atmosphäre eines fernen Sterns
Zum ersten Mal ist es einem Forscherteam gelungen, die turbulenten Bewegungen in der Atmosphäre eines anderen Sterns als der Sonne zu kartieren.
03.08.2017
Astrophysik - Klassische Mechanik
Havarierte Satelliten: Eigenbewegung zuverlässig bestimmen und prognostizieren
Unkontrollierte Objekte im Erdorbit bergen massive Risiken für funktionstüchtige Satelliten und die gesamte Raumfahrt.
11.07.2017
Klassische Mechanik - Quantenphysik
Klassische Mechanik hilft Quantencomputer zu steuern: Mit dem Tennisschläger in die Quantenwelt
Quantentechnik gilt als Zukunftstechnologie: kleiner, schneller und leistungsfähiger als herkömmliche Elektronik.
30.06.2017
Klassische Mechanik - Quantenphysik
Newton auf den Kopf gestellt
In der Quantenwelt bewegen sich Objekte nicht immer so, wie wir es im Alltag gewohnt sind.
23.11.2015
Festkörperphysik - Klassische Mechanik
Wie begann die Plattentektonik auf der Erde?
Mantelplume setzte das erste Abtauchen der Lithosphärenplatte in Gang.
23.08.2013
Schwarze_Löcher - Sterne - Klassische Mechanik
Turbulenzen im Kosmos lassen Sterne und Schwarze Löcher wachsen
Wie sich Sterne und Schwarze Löcher im Universum aus rotierender Materie bilden können, ist eine der großen Fragen in der Astrophysik.

News der letzten 7 Tage     7 Meldungen


15.10.2020
Monde - Astrophysik
Magnetfeld auf dem Mond ist Überbleibsel eines uralten Kerndynamos
Eine internationale Simulations-Studie unter Beteiligung von Forschenden des Deutschen GeoForschungsZentrums GFZ in Potsdam zeigt, dass alternative Phänomene wie Asteroiden-Einschläge keine ausreichend großen Magnetfelder erzeugen.
13.10.2020
Quantenphysik - Quantenoptik
Meilenstein in der Quantenphysik: Physikern gelingt der kontrollierte Transport von gespeichertem Licht
Patrick Windpassinger und sein Team demonstrieren, wie sich in einer Wolke aus ultrakalten Atomen gespeichertes Licht über ein "optisches Förderband" transportieren lässt.
13.10.2020
Sonnensysteme - Planeten - Astrobiologie
Erdähnliche Planeten besitzen oft einen Bodyguard
Eine Gruppe von Astronomen hat ermittelt, dass die Anordnung von Gesteins-, Gas- und Eisplaneten in Planetensystemen offenbar nicht zufällig ist und von nur wenigen Anfangsbedingungen abhängt.
12.10.2020
Sterne - Schwarze_Löcher
Tod durch Spaghettisierung: Die letzten Momente eines von einem schwarzen Loch verschlungenen Sterns
Astronomen haben mit Teleskopen der Europäischen Südsternwarte (ESO) und anderer weltweit tätiger Organisationen einen seltenen Lichtblitz von einem Stern entdeckt, der von einem supermassereichen schwarzen Loch zerrissen wird.
12.10.2020
Planeten - Satelliten
Neues Wasservorkommen auf dem Mars entdeckt
Ein internationales Team von Wissenschaftlerinnen und Wissenschaftlern unter Beteiligung der Jacobs University Bremen hat Hinweise auf die Existenz mehrerer Gewässer gefunden, die unter der Südpolkappe des Mars verborgen sind.
12.10.2020
Teilchenphysik
Wenn Mensch und Maschine dieselbe Idee haben
Über Iridiumoxid muss man völlig anders nachdenken als bisher – zu diesem Ergebnis kam nun sowohl ein menschliches Forschungsteam als auch ein Machine Learning Algorithmus.
07.10.2020
Optik - Quantenphysik
Intelligente Nanomaterialien für Photonik
In Kombination mit Lichtwellenleitern ermöglichen 2D-Materialien mit herausragenden optischen Eigenschaften ganz neue Anwendungen im Bereich der Sensorik, der nichtlinearen Optik und der Quantenelektronik.