Ist unser Universum ein Hologramm

Neues aus der Forschung

Meldung vom 27.04.2015

Zur Beschreibung des Universums braucht man möglicherweise eine Dimension weniger als es den Anschein hat.


150427-1550_medium.jpg
 
Ist das Universum ein Hologramm?
Bild:TU Wien
Arjun Bagchi, Rudranil Basu, Daniel Grumiller, and Max Riegler. 2015. Entanglement Entropy in Galilean Conformal Field Theories and Flat Holography. Phys. Rev. Lett. 114, 111602
DOI: 10.1103/PhysRevLett.114.111602

Rechnungen der TU Wien legen nun nahe, dass es sich dabei nicht bloß um einen Rechentrick handelt, sondern um eine grundlegende Eigenschaft des Raums.

Auf den ersten Blick scheint jeder Zweifel ausgeschlossen: Das Universum sieht für uns dreidimensional aus. Doch eine der fruchtbarsten Ideen der theoretischen Physik in den letzten beiden Jahrzehnten stellt genau das in Frage: Das „holographische Prinzip“ sagt, dass man für die Beschreibung unseres Universums möglicherweise eine Dimension weniger braucht als es den Anschein hat. Was wir dreidimensional erleben, kann man auch als Abbild von zweidimensionalen Vorgängen auf einem riesigen kosmischen Horizont betrachten.

Bisher wurde es nur in exotischen Raumzeiten mit negativer Krümmung studiert, die zwar theoretisch interessant sind, sich von unserem Universum aber wesentlich unterscheiden. Ergebnisse der TU Wien legen nun allerdings nahe, dass dieses holographische Prinzip auch in flachen Raumzeiten gilt, wie wir sie in unserem Universum beobachten.

Das Holographische Prinzip

Man kennt das von Hologrammen auf Geldscheinen oder Kreditkarten. Sie sind eigentlich zweidimensional, sehen für uns aber dreidimensional aus. Möglicherweise verhält sich das Universum ganz ähnlich. „Schon 1997 stellte der Physiker Juan Maldacena die Vermutung auf, dass es eine Korrespondenz zwischen Gravitationstheorien in gekrümmten Anti-de-Sitter-Räumen und Quantenfeldtheorien in Räumen mit einer Dimension weniger gibt“, sagt Daniel Grumiller vom Institut für Theoretische Physik der TU Wien.

Man beschreibt Gravitations-Phänomene in einer Theorie mit drei Raumdimensionen oder das Verhalten von Quantenteilchen in einer Theorie in zwei Raumdimensionen und kann die Ergebnisse ineinander überführen. Ein solcher Zusammenhang ist zunächst ähnlich überraschend als würde man mit den Formeln aus einem Astronomie-Lehrbuch einen CD-Player reparieren. Doch die Methode hat schon viele Erfolge gebracht. Mehr als zehntausend wissenschaftliche Arbeiten wurden mittlerweile zu Maldacenas „AdS-CFT-Korrespondenz“ veröffentlicht.

Korrespondenzprinzip auch im flachen Universum

Für die theoretische Physik ist das zwar wichtig, doch mit unserem Universum hat das zunächst noch nichts zu tun. Wir leben nämlich definitiv nicht in einem Anti-de-Sitter-Raum. Solche Räume haben sehr merkwürdige Eigenschaften. Sie sind negativ gekrümmt, Objekte, die man auf gerader Linie wegwirft, kommen wieder zurück. „Unser Universum hingegen ist ziemlich flach – und auf astronomischen Distanzen betrachtet ist es positiv gekrümmt“, sagt Daniel Grumiller.

Grumiller vermutete allerdings schon vor einigen Jahren, dass ein Korrespondenzprinzip auch für unser reales Universum gelten könnte. Um das herauszufinden, muss man Gravitationstheorien konstruieren, die keine exotischen Anti-de-Sitter-Räume brauchen, sondern in gewöhnlichen flachen Räumen zu Hause sind. Daran wird seit etwa drei Jahren in einer internationalen Kooperation von der Universität Edinburgh, Harvard, IISER Pune, dem MIT, der Universität Kyoto und der TU Wien gearbeitet. Nun veröffentlichte Grumiller mit Kollegen aus Indien und Japan einen Artikel im Journal „Physical Review Letters“, das die Korrespondenz-Vermutung in einem flachen Universum bestätigt.

Zweimal gerechnet – selbes Ergebnis

„Wenn die Quantengravitation im flachen Raum eine holographische Beschreibung durch eine gewöhnliche Quantentheorie zulässt, dann muss man physikalische Größen in beiden Theorien berechnen können, und die Ergebnisse müssen übereinstimmen“, sagt Grumiller. Insbesondere muss sich eine Schlüsseleigenschaft der Quantenmechanik – die Quantenverschränkung – auch auf der Seite der Gravitationstheorie finden.

Wenn Quantenteilchen verschränkt sind, lassen sie sich mathematisch nicht getrennt beschreiben – sie bilden quantenphysikalisch betrachtet ein gemeinsames Objekt, auch wenn sie weit voneinander entfernt sind. Ein Maß für die quantenmechanische Verschränkung ist die sogenannte „Verschränkungsentopie“. Gemeinsam mit Arjun Bagchi, Rudranil Basu und Max Riegler konnte Daniel Grumiller zeigen, dass man für diese Verschränkungsentropie in einer flachen Quantengravitationstheorie und in einer niedrigdimensionalen Quantenfeldtheorie tatsächlich denselben Wert erhält.

"Diese Rechnung bestätigt unsere Vermutung, dass das holographische Prinzip auch in flachen Raumzeiten realisiert sein kann. Es ist somit ein Hinweis für die Gültigkeit dieses Prinzips in unserem Universum." erklärt Max Riegler, DOC-Stipendiat der Österreichischen Akademie der Wissenschaften in Daniel Grumillers Forschungsgruppe. "Allein die Tatsache, dass wir auf der Gravitationsseite über Quanteninformationsbegriffe wie Verschränkungsentropie reden können ist verblüffend und war vor einigen Jahren noch schwer vorstellbar. Dass wir sie nun sogar als Werkzeug verwenden können um die Gültigkeit des holographischen Prinzips zu testen - und das dieser Test auch funktioniert hat – ist wirklich bemerkenswert“, sagt Daniel Grumiller.

Damit ist freilich noch nicht bewiesen, dass wir tatsächlich auf einem Hologramm leben – doch die Hinweise auf die Gültigkeit des Korrespondenzprinzips in unserem realen Universum scheinen sich zu verdichten.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung