Fehlersuche in der Quantenwelt

Neues aus der Forschung

Meldung vom 19.09.2018

Die Quantenmechanik ist eine experimentell bestens abgestützte Theorie. Doch nun führt ein Gedankenexperiment von ETH-Physikern zu unerwarteten Widersprüchen. Der Befund wirft grundsätzliche Fragen auf – und polarisiert auch die Fachwelt.


180920-1633_medium.jpg
 
Was sieht ein Physiker, der ein Quantenobjekt untersucht? Das Gleiche wie der Beobachter des Physikers – oder gerade das Gegenteil?
Frauchiger D, Renner R
Quantum theory cannot consistently describe the use of itself
Nature Communications, 18. September 2018
DOI: 10.1038/s41467-018-05739-8


Es gibt wohl keine andere wissenschaftliche Theorie, die derart gut abgestützt ist wie die Quantenmechanik. Seit fast 100 Jahren wird sie immer und immer wieder mit hoher Präzision experimentell bestätigt. Und doch sind die Physiker nicht restlos glücklich. Denn die Quantenmechanik beschreibt zwar sehr genau das Geschehen auf der mikroskopischen Ebene. Doch bei grösseren Objekten stösst sie an ihre Grenzen – insbesondere wenn es sich um Objekte handelt, bei denen die Gravitationskraft eine Rolle spielt. So lässt sich etwa das Verhalten von Planeten mit der Quantenmechanik nicht beschreiben. Das ist nach wie vor die Domäne der allgemeinen Relativitätstheorie, die wiederum die Vorgänge im Kleinen nicht richtig zu beschreiben vermag. Viele Physiker träumen denn auch davon, die Quantenmechanik mit der Relativitätstheorie zu einem schlüssigen Bild unserer Welt zu verknüpfen.

Hin zu grösseren Objekten

Doch wie lassen sich zwei Theorien miteinander verbinden, die zwar beide in ihren Domänen die physikalischen Vorgänge sehr treffend beschreiben, aber eben doch sehr unterschiedlich sind? Ein möglicher Weg ist, quantenphysikalische Experimente mit immer grösseren Objekten durchzuführen. Die Hoffnung dabei: Irgendwann tauchen Unstimmigkeiten auf, die mögliche Lösungswege aufzeigen. Doch den Physikern sind dabei enge Grenzen gesetzt. Das berühmte Doppelspaltexperiment etwa, mit dem gezeigt werden kann, dass feste Partikel sich gleichzeitig wie Wellen verhalten, lässt sich mit Alltagsgegenständen nicht durchführen.

Mit Gedankenexperimenten hingegen lassen sich die Grenzen zur makroskopischen Welt überwinden. Genau das haben Renato Renner, Professor für theoretische Physik, und seine ehemalige Doktorandin Daniela Frauchiger nun in einer Publikation gemacht, die heute in der Zeitschrift «Nature Communications» veröffentlicht wird. Salopp gesagt betrachten die beiden in ihrem Gedankenexperiment einen hypothetischen Physiker, der ein quantenmechanisches Objekt untersucht, und berechnen dann mit Hilfe der Quantenmechanik, was der Physiker feststellen wird. Gemäss unserem heute gültigen Weltbild sollte diese indirekte Betrachtung zum gleichen Resultat führen wie die direkte Beobachtung. Doch die Berechnungen der beiden zeigen, dass dies gerade nicht der Fall ist: Die Voraussage, was der Physiker beobachten wird, ist gerade das Gegenteil dessen, was man direkt messen würde – eine paradoxe Situation.

Keine einfachen Lösungen

Obwohl das Gedankenexperiment erst jetzt offiziell in einer Wissenschaftszeitschrift publiziert wird, hat es in der Fachwelt bereits für Gesprächsstoff gesorgt. Da sich der Publikationsprozess immer wieder verzögerte, gibt es inzwischen bereits verschiedene andere Publikationen, die sich mit den Befunden befassen – auch das eine paradoxe Situation, wie Renner schmunzelnd anmerkt.

Die übliche erste Reaktion seiner Fachkollegen sei meistens, die Berechnungen anzuzweifeln, berichtet Renner. Doch bisher ist es niemandem gelungen, die Kalkulationen zu falsifizieren. Ein Gutachter räumte ein, er hätte inzwischen fünf Mal erfolglos versucht, einen Fehler in den Berechnungen zu finden. Andere Kollegen wiederum präsentierten konkrete Erklärungen, wie das Paradox gelöst werden kann. Doch bei näherem Hinsehen zeigte sich stets, dass es sich um Ad-hoc-Lösungen handelt, mit denen sich das Problem nicht aus der Welt schaffen lässt.

Irritierende Schlussfolgerungen

Bemerkenswert findet Renner, dass das Thema offenbar polarisiert. Einige Kollegen hätten auf seine Ergebnisse sehr emotional reagiert, stellt er erstaunt fest. Das liegt wohl daran, dass die zwei naheliegenden Schlussfolgerungen aus Renners und Frauchigers Befunden gleichermassen irritierend sind. Die eine Erklärung ist, dass die Quantenmechanik offensichtlich nicht wie bisher angenommen universell anwendbar ist und demnach nicht auf grössere Objekte angewendet werden kann. Doch wie kann es sein, dass eine Theorie, die experimentell immer wieder so deutlich bestätigt wurde, inkonsistent ist? Die andere Erklärung lautet, dass es offenbar nicht nur in der Politik, sondern auch in der Physik keine klaren Fakten gibt und dass es neben dem, was wir für wahr halten, auch noch andere Möglichkeiten gibt.

Mit beiden Interpretationen tut sich Renner schwer. Er ist vielmehr überzeugt, dass sich das Paradox auf andere Weise lösen wird: «Wenn man in der Geschichte zurückblickt, dann kam die Lösung in solchen Momenten oft von unerwarteter Seite», erklärt er. So basiert beispielsweise die allgemeine Relativitätstheorie, mit der Widersprüche in der Newtonschen Physik aufgelöst werden konnten, auf der Einsicht, dass das damals noch gängige Konzept der Zeit falsch war. «Unsere Aufgabe besteht nun darin zu prüfen, ob wir bei unserem Gedankenexperiment nicht Annahmen getroffen haben, die wir in dieser Form nicht hätten treffen dürfen», erklärt Renner. «Wer weiss, vielleicht müssen wir sogar unsere Vorstellung von Raum und Zeit nochmals revidieren.» Für Renner wäre das durchaus eine reizvolle Option: «Nur wenn wir bisherige Theorien fundamental überdenken, gelangen wir zu tieferen Einsichten, wie die Natur wirklich funktioniert.»


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung