Doppelspaltexperiment

Doppelspaltexperiment

Doppelspaltexperiment

Beim Doppelspaltexperiment lässt man Wellen, zum Beispiel kohärente Lichtwellen, durch eine Blende mit zwei schmalen, parallelen Spalten treten. Auf einem Beobachtungsschirm in einer Distanz zur Blende, die sehr viel größer ist als der Abstand a der beiden Spalte, zeigt sich ein Interferenzmuster. Dieses Muster entsteht durch Beugung der Wellenausbreitung am Doppelspalt. Bei monochromatischem Licht (z. B. von einem Laser) besteht dieses Muster auf dem Schirm aus hellen Streifen (Maxima) und dunklen Streifen (Minima). Voraussetzung zur Beobachtung des Interferenzmusters ist, dass die Wellenlänge λ kleiner als der Abstand a der beiden Spalte ist.

Das Experiment wurde 1802 von Thomas Young durchgeführt, um der Wellentheorie des Lichts den Vorrang vor der Korpuskeltheorie zu geben. Der Streit zwischen diesen beiden Theorien schien bis zu Einsteins Arbeiten zum Photoelektrischen Effekt entschieden. Seither dient es insbesondere dazu, in der Quantenmechanik den Welle-Teilchen-Dualismus zu illustrieren. Es kann nicht nur mit Licht, sondern auch mit Teilchen (Elektronen, Neutronen, Atomen, Molekülen wie z. B. Fullerenen) durchgeführt werden. Die dabei beobachteten Interferenzmuster zeigen, dass auch Objekte Welleneigenschaften haben, die in der klassischen Physik nur als Teilchen angesehen werden. Bei diesen Materiewellen tritt die De-Broglie-Wellenlänge an die Stelle der Wellenlänge des Lichts.

Geschichte

1802 führte Thomas Young das Experiment erstmals durch, um die Wellennatur des Lichtes zu beweisen.

1927 zeigten Clinton Davisson und Lester Germer die Welleneigenschaften von Elektronen anhand der Beugung eines Elektronenstrahls an einem Nickel-Kristall.[1] Der Kristall wirkt dabei als Reflexionsgitter. Statt zweier Spalte sind hier sehr viele Streuzentren im Spiel.

1961 wurde das Doppelspaltexperiment mit Elektronen durch Claus Jönsson[2][3] durchgeführt und gelingt inzwischen auch mit Atomen und Molekülen.

Experimentelle Beobachtung

Interferenzmuster eines Doppelspaltexperiments mit verschiedener Anzahl Elektronen:   b: 200,  c: 6 000,  d: 40 000,  e: 140 000 [4]
  • Die beiden interferierenden Wellen müssen eine feste Phasenbeziehung zueinander haben, damit Interferenzstreifen beobachtet werden können. Ausreichende räumliche Kohärenz ist gegeben, wenn die Breite der Quelle (bei Young ein Eintrittsspalt) aus Sicht des Doppelspaltes nicht aufgelöst werden kann (siehe Rayleigh-Kriterium). Die Anforderung an die zeitliche Kohärenz hängt davon ab, wie viele Streifen man neben dem zentralen Streifen erkennen will.
  • Eine Apparatur, die ermittelt, durch welchen der beiden Spalte ein Teilchen den Detektor erreicht hat, bewirkt unvermeidlich, dass die Interferenzstreifen verschwinden. Dies gilt auch dann, wenn kein makroskopisches Messgerät anzeigt, welcher Spalt genommen wurde. Es reicht die physikalische Möglichkeit dazu. Eine besonders einfache Methode zu ermitteln, welchen Spalt ein Teilchen genommen hat, besteht darin, einen Spalt abzudecken. Dann kann ein Teilchen, das den Detektor trifft, nur den Weg durch den verbleibenden Spalt genommen haben. In diesem Fall entsteht beim Detektor kein Streifenmuster, sondern der durch Beugung bestimmte Streifen eines Einzelspalts.
  • Umgekehrt zeigen Aufbauten, bei denen es unmöglich ist, herauszufinden, welcher Spalt genommen wurde, immer ein Interferenzmuster.
  • Die beiden vorhergehenden Aussagen gelten selbst dann, wenn die Entscheidung, ob die Information über den Weg ermittelt wird, erst fällt, nachdem ein Teilchen die Spalte passiert hat. Die Entscheidung, den Weg nicht zu ermitteln, führt dazu, dass Interferenzmuster im Detektor beobachtet werden. Das kann man so deuten, dass die Information über den genommenen Weg nachträglich gelöscht wird. Daher wird ein solcher Aufbau Quantenradierer genannt.
  • Das Interferenzmuster hängt nicht von der Anzahl oder Gleichzeitigkeit der beteiligten Photonen ab. Bei niedrigerer Intensität baut sich das Interferenzmuster lediglich langsamer beim Detektor auf, bleibt aber in der Gestalt gleich. Das passiert selbst dann, wenn sich zu jedem Zeitpunkt maximal ein Teilchen zwischen Quelle und Detektor befindet. Daher muss auch die Verteilung der Wahrscheinlichkeit des Ankommens an den Positionen auf dem Detektor bei jedem einzelnen Durchflug entstehen. Dieses Phänomen lässt sich als Interferenz der Teilchen mit sich selbst interpretieren.[5]

Berechnung des Interferenzmusters

Schematische Darstellung des Doppelspaltexperiments

Der folgende Abschnitt geht von einem senkrechten Einfall einer ebenen Welle der Wellenlänge $ \lambda $ auf einen Doppelspalt mit Spaltbreite b und Spaltmittenabstand a aus. In der Spaltebene sind die Phasen noch im Gleichtakt, Phasenunterschiede, die den Interferenzeffekt ausmachen, ergeben sich erst durch die Abstände s von Punkten in den Spaltöffnungen zum Beobachtungspunkt (rote Linien). Der Abstand d des Schirms soll groß sein, $ d \gg \tfrac{a^2}{\lambda} $, Fernfeldnäherung.

Orte der Minima und Maxima durch Interferenz der beiden Spalte

Ein Minimum der Intensität findet man für solche Orte, wo der Gangunterschied $ \Delta s $ von den Spaltmitten aus ein ungerades Vielfaches der halben Wellenlänge beträgt, also $ \Delta s = \left(\pm\tfrac{1}{2},\,\pm\tfrac{3}{2},\,\pm\tfrac{5}{2},\,\dots \right)\cdot\lambda $. Dann sind die beiden Teilwellen gegenphasig und löschen sich aus. Das gilt auch für den Fall, dass die Breite der Spaltöffnungen nicht klein gegenüber der Wellenlänge ist. Dann variiert zwar s merklich mit der Lage des Punktes innerhalb der Spaltbreite, aber zu jedem Punkt in dem einen Spalt gibt es im Abstand a einen Punkt im anderen Spalt, von dem aus die Welle gegenphasig ankommt.

Maxima befinden sich etwa mittig zwischen den Minimumstellen, wo mit $ \Delta s = \left(0,\,\pm 1,\,\pm 2,\,\dots \pm n\right)\cdot\lambda $ konstruktive Interferenz gegeben ist. Für höhere Beugungsordnungen n nehmen die Maximalintensitäten ab, denn die konstruktive Interferenz gilt zwar paarweise für Punkte in beiden Spalten, aber nicht für die Variation der Punktposition innerhalb des Spaltes (s.u.).

Für den Zusammenhang zwischen dem Gangunterschied $ \Delta s $ und der Position $ x $ auf dem Schirm liest man aus der Zeichnung ab:

$ \arcsin\frac{\Delta s}{a}=\arctan\frac{x}{d} $

also für kleine Winkel ungefähr

$ \frac{\Delta s}{a}=\frac{x}{d}\,. $

Damit beträgt die Periode des Streifenmusters $ \lambda\cdot\frac{d}{a} $.

Das Interferenzmuster

Intensitätsverteilung hinter einem Doppelspalt (rot). Die Einhüllende (grau) ist das Beugungsbild eines der beiden Einzelspalte.

Allerdings hat bereits jeder der beiden Einzelspalte ein Beugungsmuster, da für verschiedene Winkel $ \alpha $ sich die obere und die untere Hälfte des Einzelspalts der Breite b gerade aufheben. Die Intensität des Doppelspaltes ist daher das Produkt der Intensität des Einzelspaltes und zweier punktförmiger Quellen im Abstand a:

$ I(\alpha)=I_0\left(\frac{\sin\gamma}{\gamma}\right)^2\cos^2\delta $

wobei $ \gamma=\frac{k_x}{2}b $ und $ \delta=\frac{k_x}{2}a $ bzw. $ \gamma=\frac{k}{2}b\sin\alpha $ und $ \delta=\frac{k}{2}a\sin\alpha $ sind.

Dabei ist $ \alpha $ der Beobachtungswinkel, $ b $ die Spaltbreite, $ a $ der Spaltabstand, $ k = 2\pi / \lambda $ die Wellenzahl und $ k_x=k\cdot\sin\alpha $ die Wellenzahlkomponente quer zu den Spalten.

Einfluss von Spaltgeometrie und Wellenlänge

Setzt man die Ausdrücke für $ \gamma $ und $ \delta $ in die Gleichung des Interferenzmusters ein, so werden die Einflüsse von Spaltgeometrie und Wellenlänge des einfallenden Lichtes auf das Aussehen des Interferenzmusters deutlich:

$ I(\alpha) = I_0 \cdot \left( \frac{\sin\left(\frac{k}{2} b \sin\alpha\right)}{\frac{k}{2} b \sin\alpha} \right)^{\!2} \cdot \cos^2\left(\frac{k}{2} a \sin\alpha\right) $

mit $ k = 2 \pi / \lambda $.

  • Eine Änderung der Spaltbreite b führt zu einer Änderung der Lage der Extrema des Einfachspaltes, dessen Intensitätsverteilung (im Bild blau) die Hüllkurve der Intensitätsverteilung des Doppelspalts bildet (im Bild rot)
→ Je breiter der Spalt, desto enger wird die Hüllkurve
  • Eine Änderung des Spaltabstandes a führt zu einer Änderung der Lage der Extrema des Doppelspalts innerhalb der konstant bleibenden Hüllkurve
→ Je größer der Spaltabstand, desto enger liegen die Extrema des Doppelspalts beieinander
  • Eine Änderung der Wellenlänge λ wirkt sich sowohl auf die Hüllkurve, wie auch auf die Intensitätsverteilung des Doppelspalts aus
→ Je größer die Wellenlänge, desto breiter werden Hüllkurve und die Interferenzabstände des Doppelspalts

Berechnung mit Fourier-Optik

Das Interferogramm einer Spaltkonstellation lässt sich auch mit Hilfe der Fourier-Optik berechnen. Dabei wird ausgenutzt, dass im Falle der Fraunhofer-Beugung das Beugungsmuster der Fouriertransformierten der Autokorrelation der Blendenfunktion entspricht. Der Vorteil dieses Ansatzes ist, dass sich auch das Beugungsbild komplizierterer Mehrfachspalte und Gitter schnell berechnen lässt. Wesentlich ist dabei die Ausnutzung des Faltungstheorems.

Das Koordinatensystem wird so gelegt, dass die zwei Einzelspalte mit Abstand a symmetrisch zum Schnitt der Koordinatenachsen liegen. Die Blendenfunktion der zwei identischen Spalte mit Breite b im Ortsraum lautet

$ (\delta(x\pm d))*\operatorname{rect}_b(x)=(\delta(x+a/2)+\delta(x-a/2))*\operatorname{rect}_b(x) $

wobei $ * $ den Faltungsoperator und $ \operatorname{rect}_b(x) $ die Rechteckfunktion bezeichnet.

Die Fouriertransformierte der gegebenen Blendenfunktion ist nach dem Faltungstheorem das Produkt aus der Fouriertransformierten der Rechteckfunktion und der Fouriertransformierten der zwei Delta-Distributionen.

$ \mathcal{F}[\operatorname{rect}_b(x)](k_x)=b\cdot \operatorname{si}\left(\frac{b}{2}k_x\right)=b\frac{\sin\left(\frac{k_x}{2}b\right)}{\frac{k_x}{2}b}=\frac{\sin\left(\frac{k_x}{2}b\right)}{\frac{k_x}{2}} $
$ \mathcal{F}[\delta(x\pm d)](k_x)=\cos(a\cdot k_x/2) $

Daraus folgt für die Intensität am Schirm ein Cosinus mit einer Sinc-Funktion als Einhüllende. Die Funktion weist die charakteristischen $ N-1=1 $ Nebenmaxima eines $ N=2 $-fach-Spaltes auf (siehe auch Optisches Gitter).

$ I(k)=I_0\left(\frac{\sin \left(\frac{k_x}{2}b\right)}{\frac{k_x}{2}b}\cdot \cos (\frac{k_x}{2}a)\right)^2 $

Mit $ I_0 $ als Intensitätskonstante.

Für $ k_x=k\cdot\sin\alpha $ folgt die oben bereits gezeigte Beziehung für $ I(\alpha) $.

Siehe auch

Literatur

  • John Gribbin: Auf der Suche nach Schrödingers Katze. Quantenphysik und Wirklichkeit. 5. Auflage. Piper, 2004, ISBN 3-492-24030-5.
  • Claus Jönsson: Interferenz von Elektronen am Doppelspalt. In: Zeitschrift für Physik, Nr. 161, 1961, S. 454–474.
  • David Halliday, Robert Resnick, Jearl Walker: Physik. 2. Auflage. Wiley-VCH, 2003, ISBN 3-527-40366-3.
  • Wolfgang Demtröder: Experimentalphysik. Bd.2 : Elektrizität und Optik. 3. Auflage. Springer, Berlin, 2004, ISBN 3-540-20210-2.

Weblinks

 Wiktionary: Doppelspaltexperiment – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 <Lang> Commons: Doppelspaltexperiment – Sammlung von Bildern, Videos und Audiodateien
 Wikibooks: Optik#Beugung am Doppelspalt – Lern- und Lehrmaterialien

Einzelnachweise

  1. C. Davisson, L. H. Germer: Diffraction of Electrons by a Crystal of Nickel. In: Physical Review. Band 30, Nr. 6, 1927, S. 705–740, doi:10.1103/PhysRev.30.705.
  2. Claus Jönsson: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. In: Zeitschrift für Physik A Hadrons and Nuclei. Band 161, Nr. 4, 1961, S. 454–474, doi:10.1007/BF01342460.
  3. Claus Jönsson: Electron Diffraction at Multiple Slits. In: American Journal of Physics. Band 42, 1974, S. 4–11.
  4. Beschreibung, Bild a und Quelle siehe hier
  5. Was ist Licht?: von der klassischen Optik zur Quantenoptik, Thomas Walther und Herbert Walther, CH Beck, 2004, S. 91 ff.

Diese Artikel könnten dir auch gefallen



Die letzten News


27.07.2021
Topologie in der Biologie
Ein aus Quantensystemen bekanntes Phänomen wurde nun auch im Zusammenhang mit biologischen Systemen beschrieben: In einer neuen Studie zeigen Forscher dass der Begriff des topologischen Schutzes auch für biochemische Netzwerke gelten kann.
26.07.2021
Nadel im Heuhaufen: Planetarische Nebel in entfernten Galaxien
Mit Daten des Instruments MUSE gelang Forschern die Detektion von extrem lichtschwachen planetarischen Nebeln in weit entfernten Galaxien.
26.07.2021
Langperiodische Schwingungen der Sonne entdeckt
Ein Forschungsteam hat globale Schwingungen der Sonne mit sehr langen Perioden, vergleichbar mit der 27-tägigen Rotationsperiode der Sonne, entdeckt.
26.07.2021
Ein Stoff, zwei Flüssigkeiten: Wasser
Wasser verdankt seine besonderen Eigenschaften möglicherweise der Tatsache, dass es aus zwei verschiedenen Flüssigkeiten besteht.
26.07.2021
Ins dunkle Herz von Centaurus A
Ein internationales Forscherteam hat das Herz der nahegelegenen Radiogalaxie Centaurus A in vorher nicht erreichter Genauigkeit abgebildet.
26.07.2021
Ein möglicher neuer Indikator für die Entstehung von Exoplaneten
Ein internationales Team von Astronomen hat als erstes weltweit Isotope in der Atmosphäre eines Exoplaneten nachgewiesen.
26.07.2021
Auf dem Weg zur Supernova – tränenförmiges Sternsystem offenbart sein Schicksal
Astronomen ist die seltene Sichtung zweier Sterne gelungen, die spiralförmig ihrem Ende zusteuern, indem sie die verräterischen Zeichen eines tränenförmigen Sterns bemerkten.
26.07.2021
Quantenteilchen: Gezogen und gequetscht
Seit kurzem ist es im Labor möglich, die Bewegung schwebender Nanoteilchen in den quantenmechanischen Grundzustand zu versetzen.
26.07.2021
Ein Kristall aus Elektronen
Forschenden der ETH Zürich ist die Beobachtung eines Kristalls gelungen, der nur aus Elektronen besteht. Solche Wigner-​Kristalle wurden bereits vor fast neunzig Jahren vorhergesagt, konnten aber erst jetzt direkt in einem Halbleitermaterial beobachtet werden.
26.07.2021
Neue Erkenntnisse zur Entstehung des chaotischen Terrains auf dem Mars
Gebiete wie diese gibt es auf der Erde nicht: Sie sind durchzogen von Kratern, Rissen, Kämmen, Tälern, großen und kleinen eckigen Blöcken.
26.07.2021
Synthese unter Laserlicht
Eine Forschungsgruppe hat neue Methode zur Bildung von protoniertem Wasserstoff entdeckt. Mit starken Laserpulsen erzeugen Physiker des attoworld-Teams am Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München erstmals protonierten Wasserstoff an Nanooberflächen.
26.07.2021
Materiestraße im All lässt Galaxienhaufen wachsen
Vor einem halben Jahr meldeten Astronomen der Universität Bonn die Entdeckung eines extrem langen intergalaktischen Gasfadens mit dem Röntgenteleskop eROSITA.
26.07.2021
Kosmischer Treffpunkt für Galaxienhaufen
Was treibt Galaxien an, oder führt zu ganzen Ansammlungen von Galaxien – sogenannte Galaxienhaufen? Obwohl kosmologische Modelle und Simulationen diese Strukturen und die Rolle, die sie spielen könnten, vorausgesagt haben, ist die Bestätigung ihrer Existenz durch die Beobachtung mit dem Röntgen-Weltraumteleskop eROSITA ziemlich neu.
28.06.2021
Quantensimulation: Messung von Verschränkung vereinfacht
Forscher haben ein Verfahren entwickelt, mit dem bisher kaum zugängliche Größen in Quantensystemen messbar gemacht werden können.
28.06.2021
Exotische Supraleiter: Das Geheimnis, das keines ist
Wie reproduzierbar sind Messungen in der Festkörperphysik? Ein Forschungsteam analysierte wichtige Messungen neu. Sie fanden heraus: Ein angeblich sensationeller Effekt existiert gar nicht.
28.06.2021
Paradoxe Wellen: Gefangene Lichtteilchen auf dem Sprung
Physikern ist es gelungen, ein neuartiges Verhalten von Lichtwellen zu beobachten, bei welchem Licht durch eine neue Art von Unordnung auf kleinste Raumbereiche begrenzt wird.
28.06.2021
Isolatoren bringen Quantenbits zum Schwitzen
Schwachleitende oder nichtleitende Materialien haben Innsbrucker Physiker als wichtige Quelle für Störungen in Ionenfallen-Quantencomputern identifiziert.
23.06.2021
Fürs Rechenzentrum: bisher kompaktester Quantencomputer
Quantencomputer waren bislang Einzelanfertigungen, die ganze Forschungslabore füllten.
17.06.2021
Helligkeitseinbruch von Beteigeuze
Als der helle, orangefarbene Stern Beteigeuze im Sternbild Orion Ende 2019 und Anfang 2020 merklich dunkler wurde, war die Astronomie-Gemeinschaft verblüfft.
17.06.2021
Das Elektronenkarussell
Die Photoemission ist eine Eigenschaft unter anderem von Metallen, die Elektronen aussenden, wenn sie mit Licht bestrahlt werden.
17.06.2021
Ultrakurze Verzögerung
Trifft Licht auf Materie geht das an deren Elektronen nicht spurlos vorüber.
17.06.2021
Entdeckung der größten Rotationsbewegung im Universum
D
13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.