Erste Anzeichen von selbstwechselwirkender Dunkler Materie

Neues aus der Forschung

Meldung vom 24.04.2015

Zum ersten Mal könnte Dunkle Materie dabei beobachtet worden sein anders als nur über ihre Schwerkraft mit anderer Dunkler Materie in Wechselwirkung zu treten.


150424-1510_medium.jpg
 
Hubble-Aufnahme des Galaxienhaufens Abell 3827
Bild: ESO
Massey et al. 2015. The behaviour of dark matter associated with 4 bright cluster galaxies located in the 10 kpc core of Abell 3827. Monthly Notices of the Royal Astronomical Society.
DOI: 10.1093/mnras/stv467

Mit dem Very Large Telescope der ESO (VLT) und dem NASA/ESA Hubble Space Telescope gemachte Beobachtungen kollidierender Galaxien haben nun die ersten faszinierenden Hinweise über die Natur dieser geheimnisvollen Komponente des Universums geliefert.

Ein Team von Astronomen hat mit dem MUSE-Instrument am VLT der ESO in Chile zusammen mit Hubble-Bildern aus dem Erdorbit die gleichzeitige Kollision von vier Galaxien im Galaxienhaufen Abell 3927 untersucht. So konnten die Wissenschaftler die Lage der Masse innerhalb des Systems bestimmen und die Verteilung der Dunklen Materie mit den Positionen der hell leuchtenden Galaxien vergleichen.

Obwohl man die Dunkle Materie nicht sehen kann, war das Team in der Lage, ihre Verteilung aufgrund des Gravitationslinseneffekts abzuleiten, den ihre Masse auf das Licht von Hintergrundgalaxien ausübt. Die Kollision ereignete sich geradewegs vor einer fünften Hintergrundgalaxie, deren Abbild von der Kollision im Vordergrund verzerrt wird. Die Masse der Dunklen Materie um die wechselwirkenden Galaxien stört die Raumzeit sehr stark und erzeugt charakteristische bogenförmige Strukturen.

Nach unserem gegenwärtigen Verständnis befinden sich alle Galaxien innerhalb von Klumpen Dunkler Materie. Ohne die anziehende und somit zusammenhaltende Wirkung der Schwerkraft der Dunklen Materie würden Galaxien wie die Milchstraße auseinandergerissen, während sie rotieren. Um dies zu verhindern, müssen 85% der Masse des Universums [1] als Dunkle Materie existieren. Trotzdem bleibt deren wahre Natur ein Geheimnis.

Im Rahmen dieser Studie beobachteten die Forscher die vier kollidierenden Galaxien und fanden heraus, dass ein Klumpen Dunkler Materie hinter der Galaxie zurückzubleiben scheint, zu der er gehört. Die Dunkle Materie liegt gegenwärtig 5000 Lichtjahre, also 50.000 Billionen Kilometer, hinter der Galaxie – die Voyager-Sonde der NASA würde 90 Millionen Jahre brauchen, um sich so weit von unserer Milchstraße zu entfernen.

Solche Verzögerungen in der Bewegung von Dunkler Materie und im Vergleich zur assoziierten Galaxie, sollten bei Kollisionen auftreten, wenn die Dunkle Materie über andere Kräfte als die Gravitation mit sich selbst wechselwirkt, wenn auch sehr gering [2]. Nie zuvor ist Dunkle Materie dabei beobachtet worden, in irgendeiner anderen Weise als über die Schwerkraft zu interagieren.

Richard Massey von der Universität Durham, der Erstautor der Studie, erklärt: „Wir dachten bislang immer, dass Dunkle Materie einfach da ist und abgesehen von ihrer gravitativen Anziehung nichts tut. Aber wenn Dunkle Materie durch diese Kollision verlangsamt worden ist, könnte es der erste Hinweis für eine reichhaltige Physik im dunklen Sektor sein – das verborgene Universum überall um uns herum.”

Die Wissenschaftler merken allerdings an, dass weitere Studien zu anderen Effekten durchgeführt werden müssen, die ebenfalls die Ausbildung eines Abstands zwischen Galaxie und dazugehöriger Dunkler Materie bewirken könnten. Ähnliche Beobachtungen von weiteren Galaxien und Computersimulationen von Galaxienkollisionen wären sehr hilfreich.

Teamitglied Liliya Williams von der Universität von Minnesota fügt hinzu: “Wegen der gravitativen Wechselwirkungen, die dem Universum seine Struktur gegeben hat, wissen wir, dass die Dunkle Materie existiert. Aber zur Zeit wissen wir noch beschämend wenig darüber, was die Dunkle Materie wirklich ist. Unsere Beobachtungen legen nahe, dass Dunkle Materie auch anderen Kräfte als die Gravitation für Wechselwirkungen nutzen könnte. Wenn dem tatsächlich so wäre, könnten wir einige bedeutende Theorien ausschließen, die beschreiben, um was es sich bei Dunkler Materie handeln könnte

Die neue Studie folgt dem vor kurzem veröffentlichten Artikel des Teams, in dem 72 Kollisionen zwischen Galaxienhaufen untersucht wurden [3], mit dem Ergebnis dass Dunkle Materie nur sehr wenig mit sich selbst wechselwirken kann. Die neue Studie beschäftigt sich jedoch mit den Bewegungen individueller Galaxien im Gegensatz zu ganzen Galaxienhaufen. Die Forscher gehen davon aus, dass die Kollision zwischen diesen Galaxien länger gedauert haben könnte als die Kollisionen, die man in der vorherigen Studie beobachtet hat – was den Effekt, den kleine Reibungskräfte ausüben, sich über längere Zeit aufbauen und so eine messbare Verzögerung schaffen lässt [4].

Zusammengenommen grenzen die beiden Ergebnisse das Verhalten von Dunkler Materie zum ersten Mal ein. Dunkle Materie interagiert mehr als das eine, aber weniger als das andere. Massey ergänzt abschließend: “So nähern wir uns unserem Ziel – der Dunklen Materie – von oben und von unten und quetschen dabei unser Wissen von zwei Richtungen zusammen.”

Endnoten

[1] Astronomen haben herausgefunden, dass der gesamte Masse- bzw. Energieinhalt des Universums in die Proportionen 68% Dunkle Energie, 27 % Dunkle Materie und 5% „normale“ Materie aufgeteilt ist. Die Angabe von 85 % bezieht sich auf den Materieanteil, der dunkel ist.

[2] Computersimulationen zeigen, dass die zusätzliche Reibung durch die Kollision die Dunkle Materie verlangsamen würde. Die Natur dieser Wechselwirkung ist unbekannt; sie könnte durch bekannte Effekte oder eine exotische unbekannte Kraft verursacht werden. Alles, was sich zum jetzigen Zeitpunkt sagen lässt, ist, dass es sich nicht um Gravitation handelt.

[3] Galaxienhaufen enthalten bis zu tausend einzelne Galaxien.

[4] Die Hauptunsicherheit im Ergebnis ist die Zeitspanne für die Kollision: Die Reibung, die die Dunkle Materie verlangsamt hat, könnte eine sehr schwache Kraft gewesen sein, die über ungefähr eine Milliarde Jahre wirkte, oder eine stärkere Kraft, die „nur“ 100 Millionen Jahre lang wirkte.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung