26AlF – die erste Entdeckung eines radioaktiven Moleküls im Weltraum

Neues aus der Forschung

Meldung vom 30.07.2018

Der erste eindeutige Nachweis eines radioaktiven Moleküls, 26AlF, im Weltraum, ist in der direkten Umgebung des historischen Nova-ähnlichen Objekts CK Vul gelungen, bei dem es sich höchstwahrscheinlich um den Überrest der Kollision zweier Sterne handelt. Der Helligkeitsausbruch dieser Quelle konnte in den Jahren 1670 bis 1672 in Europa beobachtet werden. Das Interesse an diesem Objekt lebte erst vor wenigen Jahren wieder auf, als man molekulares Gas mit einzigartiger Isotopenzusammensetzung im Überrest nachweisen konnte. Die Entdeckung gelang einem internationalen Forscherteam unter der Leitung von Tomasz Kamiński (CfA) unter der Beteiligung von Karl Menten (MPIfR Bonn).


180801-0317_medium.jpg
 
Molekülkomponenten des kühlen Gasnebels um den Stern CK Vul (vgl. Abb. 1) als Overlay auf ein Nachtbild der ALMA-Antennen in 5100 m Höhe auf der Chajnantorebene in Chile.
Tomasz Kamiński et al.
Astronomical detection of a radioactive molecule 26AlF in a remnant of an ancient explosion
Advanced Online Publication (AOP), Nature Astronomy, 30. Juli 2018
DOI: 10.1038/s41550-018-0541-x


Der veränderliche Stern CK Vulpeculae (CK Vul) ist als Ort eines stellaren Helligkeitsausbruchs, einer sogenannten Nova, bekannt, die von europäischen Astronomen im 17. Jahrhundert in Richtung des Sternbilds “Vulpecula” (das Füchschen) beobachtet werden konnte. Die Nova Vul 1670 war leicht mit bloßem Auge zu erkennen und zeigte deutliche Helligkeitsschwankungen über die beiden folgenden Jahre. Es dauerte dann lange Zeit, bis zum Jahr 2013, bevor ein Team von Astronomen durch Beobachtungen mit dem “Atacama Pathfinder Experiment” (APEX), molekulares Gas mit einzigartiger Isotopenzusammensetzung im Überrest dieses Ausbruchs nachweisen konnte. Die Analyse dieses überraschenden Befundes deutete darauf hin, dass ein sehr seltenes Ereignis dafür die Ursache war, nämlich der Zusammenstoß und die anschließende Verschmelzung zweier Einzelsterne. Die Kollision erzeugte ein Objekt, das man auch als “Roter Transient” oder “Rote Nova” bezeichnet, eine erst seit kurzem definierte neue Klasse eruptiver Sterne.

Die Beobachtung des Isotops 26Al ermöglicht Einblicke in den Verschmelzungsprozess von CK Vul und zeigt, dass selbst tief im Inneren liegende Schichten des Sterns bei solch einer Kollision zutage treten können. Darüber hinaus ermöglichten es die gefundenen Resultate die Natur des zugrunde liegenden Doppelsternsystems genauer einzugrenzen. Es handelt sich dabei um ein sogenanntes “Low-mass Binary System” mit einer Komponente von 0,8-2,5 Sonnenmassen, die sich als “Roter Riese” in einem bereits fortgeschrittenen Stadium ihrer Sternentwicklung befand.


 
Moleküle im Gasnebel um den Stern CK Vul: Kation Diazenyl (N2H+) in Blau, Methanol (CH3OH) in Rot und die Emission von AlF in Zyan/Grün und Gelb, radioaktives 26AlF tritt nur im innersten Teil auf.

Der erste direkte Nachweis von 26Al in einem sternartigen Objekt ist auch in einem größeren Zusammenhang für die chemische Entwicklung der Milchstraße von Bedeutung. Zum ersten Mal konnte eine aktive Quelle für die Erzeugung des radioaktiven Nuklids 26Al durch Beobachtungen belegt werden. Es ist bereits seit Jahrzehnten bekannt, dass ca. zwei Sonnenmassen von 26Al über die Milchstraße verteilt sind. Obwohl über ihre Gammastrahlung nachweisbar, ist die genaue Herkunft dieser radioaktiven Wolke bisher unbekannt. Mit den aktuellen Abschätzungen über die Masse von 26Al in CK Vul und der Anzahl von Sternkollisionen in der Milchstraße erscheint es sehr unwahrscheinlich, dass die Kollisionen alleine verantwortlich sind für die Erzeugung dieses radioaktiven Materials in der Milchstraße. Allerdings könnte die tatsächliche Masse von 26Al in atomarer Form in CK Vul und anderen Überresten solcher Sternverschmelzungen deutlich höher sein. Vielleicht ist auch die derzeit angenommene Verschmelzungsrate unterschätzt, so dass die Rolle der Sternverschmelzungen bei der Erzeugung radioaktiven Materials vielleicht nicht vernachlässigt werden sollte.

Durch die aktuellen Beobachtungen ist eine völlig neue Art von Objekten für die Erzeugung von 26Al in der Milchstraße in den Fokus gerückt. Sie zeigen außerdem, dass moderne Radiointerferometer wie ALMA bei Millimeterwellenlängen zur Suche nach dem Ursprung des radioaktiven 26Al in der Milchstraße eingesetzt werden können – und das mit wesentlich höherer Winkelauflösung als bei Gammastrahlungs-Observatorien.

Ein anderer wichtiger Aspekt der vorliegenden Arbeit ist, dass die Linienpositionen im Spektrum zunächst von Molekülspektroskopikern berechnet wurden, die als Ko-Autoren in der Veröffentlichung vertreten sind. Die Darstellung von Material mit darin enthaltenem 26Al durch direkte Labormessungen würde extrem herausfordernd und auch teuer, so dass die Berechnungen den einzig gangbaren Weg darstellen. Die beobachteten Linienübergänge stimmen perfekt mit den aus den Berechnungen vorhergesagten überein.

Auch in Zukunft bleibt CK Vul eine rätselhafte Quelle am Himmel und stellt einen Tummelplatz für neue astronomische Entdeckungen dar.

Bei der Entdeckung waren folgende Radioteleskope und Teleskopnetzwerke beteiligt: APEX, IRAM-30m, NOEMA, ALMA, and SMA. Die wichtigsten Beobachtungen für das Projekt wurden dabei vom PdbI/NOEMA-Interferometer sowie vom Teleskopnetzwerk ALMA in Chile beigesteuert, unter anderem mit dem soeben erst in Betrieb gegangenen Band-5-Empfangssystem für 1,4 bis 1,8 mm Wellenlänge.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...

Meldung vom 30.11.2018

Von der Natur lernen

Designregeln für belastbare Stromnetze und biologische Sensornetze.

Meldung vom 28.11.2018

Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt

Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste ...

Meldung vom 28.11.2018

Supermikroskop beobachtet Lithium-Atome auf Wanderschaft - Einblicke in Minibatterie aus Graphen

Man kann es schlicht und einfach eine Sensation nennen, was hier Wissenschaftlern aus Stuttgart, Ulm und Dresd ...

Meldung vom 26.11.2018

Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X

Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) ...

Meldung vom 26.11.2018

Thermoelektrische Kühlung wird fit für die Mikrotechnologie

Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoele ...

Meldung vom 26.11.2018

Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu r ...

Meldung vom 23.11.2018

Auf dem Weg zum Beschleuniger auf dem Mikrochip

Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt entwickeln ein Konzept eines lasergetriebe ...

Meldung vom 23.11.2018

Ultrakalter „Quantencocktail“

Die experimentelle Untersuchung von ultrakalter Quantenmaterie ermöglicht die Erforschung von quantenmechanis ...


24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung