Einzelne Silber-Nanopartikel in Echtzeit beobachtet

Neues aus der Forschung

Meldung vom 30.07.2018

Chemikerinnen und Chemiker der Ruhr-Universität Bochum haben eine neue Methode entwickelt, um in Echtzeit die chemischen Reaktionen von einzelnen Silber-Nanopartikeln zu beobachten, die gerade einmal ein Tausendstel der Dicke eines menschlichen Haares messen. Die Partikel werden in der Medizin, in Nahrungsmitteln und Sportartikeln genutzt, weil sie antibakteriell und entzündungshemmend wirken. Wie sie in ökologischen und biologischen Systemen reagieren und abgebaut werden, ist bislang aber kaum verstanden. Das Team der Forschungsgruppe für Elektrochemie und Nanoskalige Materialien zeigte, dass sich die Nanopartikel unter bestimmten Bedingungen in schwerlösliches Silberchlorid umwandeln.


180801-0312_medium.jpg
 
Die Chemikerinnen und Chemiker der RUB ergründen das Verhalten von einzelnen Nanopartikeln, wie sie hier in Lösung zu sehen sind.
Kevin Wonner, Mathies V. Evers, Kristina Tschulik
Simultaneous opto- and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy,
Journal of the American Chemical Society
DOI: 10.1021/jacs.8b02367


Die Gruppe um Prof. Dr. Kristina Tschulik berichtet über die Ergebnisse im Journal of the American Chemical Society vom 11. Juli 2018.

Messung in natürlicher Umgebung

Selbst unter wohldefinierten Laborbedingungen haben aktuelle Forschungsarbeiten unterschiedliche, teils widersprüchliche Ergebnisse zur Reaktion von Silber-Nanopartikeln erbracht. „In jeder Nanopartikel-Charge variieren die individuellen Eigenschaften der Partikel wie Größe und Form“, sagt Kristina Tschulik, Mitglied im Exzellenzcluster Ruhr Explores Solvation. „Mit bisherigen Verfahren wurde meist eine Myriade von Partikeln gleichzeitig untersucht, sodass Auswirkungen dieser Variationen nicht erfasst werden konnten. Oder die Messungen fanden im Hochvakuum statt, nicht unter natürlichen Bedingungen in wässriger Lösung.“

Das Team um Kristina Tschulik entwickelte daher eine Methode, mit der sich einzelne Silberpartikel in natürlicher Umgebung untersuchen lassen. „Unser Ziel ist, die Reaktivität von einzelnen Partikeln erfassen zu können“, erklärt die Forscherin. Dafür braucht es eine Kombination aus elektrochemischen und spektroskopischen Methoden. Mit der optischen und hyperspektralen Dunkelfeldmikroskopie konnte die Gruppe einzelne Nanopartikel als farbige Bildpunkte sichtbar machen. Anhand der Farbänderung der Punkte, genauer gesagt anhand ihrer spektralen Information, konnten die Wissenschaftlerinnen und Wissenschaftler in Echtzeit verfolgen, was in einem elektrochemischen Experiment passiert.


 
Kevin Wonner analysiert einzelne Nanopartikel unter dem Mikroskop.

Abbau der Partikel verlangsamt

Mit dem Versuch stellte das Team die Oxidation von Silber in Anwesenheit von Chlorid-Ionen nach, wie sie häufig in ökologischen und biologischen Systemen erfolgt. „Bislang ging man meist davon aus, dass sich die Silberpartikel in Form von Silberionen auflösen“, beschreibt Kristina Tschulik. Im Experiment bildete sich jedoch schwerlösliches Silberchlorid – selbst wenn nur wenige Chlorid-Ionen in der Lösung vorhanden waren.

„Dadurch wird die Lebensdauer der Nanopartikel extrem verlängert und ihr Abbau unerwartet drastisch verlangsamt“, resümiert Tschulik. „Das ist gleichermaßen für Gewässer wie für Lebewesen wichtig, weil sich das Schwermetall Silber durch diesen Mechanismus lokal anreichern könnte, was für viele Organismen toxisch sein kann.“

Weiterentwicklung geplant

Ihre Technik zur Analyse einzelner Nanopartikel will die Bochumer Gruppe nun weiterentwickeln, um die Alterungsmechanismen solcher Partikel besser zu verstehen. So wollen die Forscher künftig weitere Informationen zur Biokompatibilität der Silberteilchen und zur Lebensdauer und Alterung von katalytisch aktiven Nanopartikeln erlangen.

Förderung

Die Arbeiten wurden unterstützt im Rahmen des NRW-Rückkehrerprogramms sowie durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Ruhr Explores Solvation (EXC 1069).


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...

Meldung vom 30.11.2018

Von der Natur lernen

Designregeln für belastbare Stromnetze und biologische Sensornetze.

Meldung vom 28.11.2018

Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt

Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste ...

Meldung vom 28.11.2018

Supermikroskop beobachtet Lithium-Atome auf Wanderschaft - Einblicke in Minibatterie aus Graphen

Man kann es schlicht und einfach eine Sensation nennen, was hier Wissenschaftlern aus Stuttgart, Ulm und Dresd ...

Meldung vom 26.11.2018

Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X

Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) ...

Meldung vom 26.11.2018

Thermoelektrische Kühlung wird fit für die Mikrotechnologie

Wissenschaftler des Leibniz-Instituts für Festkörper- und Werkstoffforschung haben die Herstellung thermoele ...

Meldung vom 26.11.2018

Selbstorganisierte, molekulare Monolagen für effiziente Perowskit-Solarzellen

Ein Team am HZB hat ein neues Verfahren entdeckt, um effiziente Kontaktschichten in Perowskit-Solarzellen zu r ...

Meldung vom 23.11.2018

Auf dem Weg zum Beschleuniger auf dem Mikrochip

Elektrotechniker am Fachgebiet Beschleunigerphysik der TU Darmstadt entwickeln ein Konzept eines lasergetriebe ...

Meldung vom 23.11.2018

Ultrakalter „Quantencocktail“

Die experimentelle Untersuchung von ultrakalter Quantenmaterie ermöglicht die Erforschung von quantenmechanis ...


24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung