Zerfallsreihe

Zerfallsreihe

Eine Zerfallsreihe ist allgemein die Abfolge der nacheinander entstehenden Produkte eines radioaktiven Zerfalls. Sie entsteht, indem ein Radionuklid sich in ein anderes, dieses in ein drittes umwandelt usw. („zerfällt“). Das zuerst entstehende Nuklid wird Tochternuklid genannt, das dem Tochternuklid folgende Enkelnuklid, das dem Enkelnuklid folgende Urenkelnuklid usw.

Aus einer vorhandenen Menge eines instabilen Nuklids bildet sich durch Zerfall ein Gemisch der Nuklide, die ihm in der Zerfallsreihe folgen, bevor irgendwann alle Atomkerne die Reihe bis zum Endnuklid durchlaufen haben. In dem Gemisch sind Nuklide mit kurzer Halbwertszeit nur in geringer Menge vorhanden, während solche mit längerer Halbwertszeit sich entsprechend stärker ansammeln.

Die drei natürlichen Zerfallsreihen

Praktisch und historisch wichtig sind die Zerfallsreihen der drei primordialen Radionuklide Uran-238, Uran-235 und Thorium-232, auch Natürlich radioaktive Familien genannt.[1] Sie entstehen durch Alpha- und Beta-Zerfälle, die mehr oder weniger regelmäßig abwechselnd aufeinander folgen. Manche der beteiligten Nuklide haben auch die alternativ mögliche, aber seltene Zerfallsart Spontanspaltung; sie führt aus der jeweiligen Zerfallsreihe hinaus und wird hier nicht beachtet.

Ein Alphazerfall verringert die Massenzahl des Atomkerns um 4 Einheiten, ein Betazerfall lässt sie unverändert. Schreibt man die Massenzahl A als A = 4n+m (dabei ist n irgendeine natürliche Zahl und m eine der Zahlen 0, 1, 2 oder 3), bleibt deshalb m innerhalb einer solchen Zerfallsreihe stets konstant. Die drei genannten Anfangsnuklide haben verschiedene Werte von m. Daher erzeugt

  • Uran-238 die „(4n+2)-Reihe“ oder Uran-Radium-Reihe mit dem Endnuklid Blei-206,
  • Uran-235 die „(4n+3)-Reihe“ oder Uran-Actinium-Reihe mit dem Endnuklid Blei-207,
  • Thorium-232 die „(4n)-Reihe“ oder Thorium-Reihe mit dem Endnuklid Blei-208.

Thorium-232 ist zwar primordial, aber nach heutiger Kenntnis sind auch seine Vorgängernuklide bis zum Plutonium-244 auf der Erde vorhanden.[2]

Eine vierte Zerfallsreihe

In der obigen (4n+m)-Systematik „fehlt“ eine Reihe mit m = 1. Da es im Massenzahlbereich von Uran und Thorium kein primordiales Nuklid mit A = 4n+1 gibt, kommt eine solche Zerfallsreihe in der Natur nicht (mehr) vor. Der Systematik zuliebe wird aber die Zerfallsreihe der künstlich erzeugbaren Nuklide Plutonium-241 oder Neptunium-237, die Neptunium-Reihe, als diese fehlende vierte Reihe betrachtet.[3] Nur das letzte Radionuklid dieser Reihe, Bismut-209, ist wegen seiner extrem langen Halbwertszeit noch vorhanden. Es wurde lange für das Endnuklid gehalten, bis 2003 entdeckt wurde, dass es ein Alphastrahler mit 19 Trillionen Jahren Halbwertszeit ist. Das Endnuklid ist daher Thallium-205.

Lage in der Nuklidkarte

Neutronenzahl N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
Curium Z = 96





















242Cm
alpha

244Cm
alpha

246Cm
alpha
Americium Z = 95




















240Am
Elektroneneinfang (99,9999 %) alpha (0,0001 %)
241Am
alpha
242Am
beta (82,7 %) Elektroneneinfang (17,3 %)
243Am
alpha
244Am
beta
Plutonium Z = 94

















236Pu
alpha
237Pu
Elektroneneinfang (99,9958 %) alpha (0,0042 %)
238Pu
alpha
239Pu
alpha
240Pu
alpha
241Pu
beta (99,0075 %) alpha (0,0025 %)
242Pu
alpha
243Pu
beta
244Pu
alpha
Neptunium Z = 93















233Np
Elektroneneinfang (99,999 %) alpha (0,001 %)
234Np
Elektroneneinfang
235Np
Elektroneneinfang (99,9974 %) alpha (0,0026 %)
236Np
Elektroneneinfang (87,3 %) beta (12,5 %) alpha 0,2 %
237Np
alpha
238Np
beta
239Np
beta
240Np
beta


Uran Z = 92













230U
alpha
231U
Elektroneneinfang (99,9945 %) alpha (0,0055 %)
232U
alpha
233U
alpha
234U
alpha
235U
alpha
236U
alpha
237U
beta
238U
alpha
239U
beta
240U
beta

Protactinium Z = 91













229Pa
Elektroneneinfang (99,52 %) alpha (0,48 %)
230Pa
Elektroneneinfang (91,6 %) beta (8,4 %) alpha (0,0032 %)
231Pa
alpha
232Pa
beta (99,997 %) Elektroneneinfang (0,003 %)
233Pa
beta
234Pa
beta






Thorium Z = 90











226Th
alpha
227Th
alpha
228Th
alpha
229Th
alpha
230Th
alpha
231Th
beta (99,999999 %) alpha (0,000001 %)
232Th
alpha
233Th
beta
234Th
beta





Actinium Z = 89











225Ac
alpha
226Ac
Elektroneneinfang (83 %) beta (17 %) alpha (0,006 %)
227Ac
beta (98,62 %) alpha (1,38 %)
228Ac
beta










Radium Z = 88








221Ra
alpha
222Ra
alpha
223Ra
alpha
224Ra
alpha
225Ra
beta
226Ra
alpha
227Ra
alpha
228Ra
beta









Francium Z = 87









221Fr
alpha (99,9 %) beta (0,1 %)
222Fr
beta
223Fr
beta (99,994 %) alpha (0,006 %)













Radon Z = 86






217Rn
alpha
218Rn
alpha
219Rn
alpha
220Rn
alpha

222Rn
alpha
223Rn
beta












Astat Z = 85





215At
alpha

217At
alpha (99,99 %) beta (0,01 %)
218At
alpha (99,90 %) beta (0,10 %)
219At
alpha (99,99 %) beta (0,01 %)















Polonium Z = 84

210Po
alpha
211Po
alpha
212Po
alpha
213Po
alpha
214Po
alpha
215Po
alpha (99,999977 %) beta (0,000023 %)
216Po
alpha

218Po
alpha (99,98 %) beta (0,02 %)















Bismut Z = 83

209Bi
alpha
210Bi
beta (99,99987 %) alpha (0,00013 %)
211Bi
alpha (99,72 %) beta (0,28 %)
212Bi
beta (64,06 %) alpha (35,94 %)
213Bi
beta (97,91 %) alpha (2,09 %)
214Bi
beta (99,98 %) alpha (0,02 %)
215Bi
beta

















Blei Z = 82 206Pb
207Pb
208Pb
209Pb
beta
210Pb
beta (˜100%) alpha (1,9·10−6 %)
211Pb
beta
212Pb
beta

214Pb
beta

















Thallium Z = 81 205Tl
206Tl
beta
207Tl
beta
208Tl
beta
209Tl
beta
210Tl
beta




















Quecksilber Z = 80

206Hg
beta























Neutronenzahl N =  124   125   126   127   128   129   130   131   132   133   134   135   136   137   138   139   140   141   142   143   144   145   146   147   148   149   150 
 
Legende:
Uran-Radium-Reihe
Uran-Actinium-Reihe
(Plutonium-) Thorium-Reihe
(Plutonium-)Neptunium-Reihe
(Pfeile nicht maßstäblich)
 
Fortsetzung
Fortsetzung
Fortsetzung
Fortsetzung
 

Historische Bezeichnungen

In der klassischen Zeit der Erforschung der radioaktiven Zerfallsreihen – also im frühen 20. Jahrhundert – wurden die verschiedenen Nuklide mit anderen Namen bezeichnet, an denen sich die Zugehörigkeit zu einer natürlichen Zerfallsreihe und die Ähnlichkeit in den Eigenschaften erkennen ließ (z. B. sind Radon, Thoron und Actinon allesamt Edelgase):[4]

Aktueller Name Historischer Name Langversion des Namens
238U UI Uran I
235U AcU Actinuran
234U UII Uran II
234mPa UX2 Uran X2
234Pa UZ Uran Z
231Pa Pa Protactinium
234Th UX1 Uran X1
232Th Th Thorium
231Th UY Uran Y
230Th Io Ionium
228Th RdTh Radiothor
227Th RdAc Radioactinium
228Ac MsTh2 Mesothor 2
227Ac Ac Actinium
228Ra MsTh1 Mesothor 1
226Ra Ra Radium
224Ra ThX Thorium X
223Ra AcX Actinium X
223Fr AcK Actinium K
222Rn Rn Radon
220Rn Tn Thoron
219Rn An Actinon
218Po RaA Radium A
216Po ThA Thorium A
215Po AcA Actinium A
214Po RaC' Radium C'
212Po ThC' Thorium C'
211Po AcC' Actinium C'
210Po RaF Radium F
214Bi RaC Radium C
212Bi ThC Thorium C
211Bi AcC Actinium C
210Bi RaE Radium E
214Pb RaB Radium B
212Pb ThB Thorium B
211Pb AcB Actinium B
210Pb RaD Radium D
208Pb ThD Thorium D
207Pb AcD Actinium D
206Pb RaG Radium G
210Tl RaC" Radium C"
208Tl ThC" Thorium C"
207Tl AcC" Actinium C"

Die drei natürlichen Zerfallsreihen sähen in dieser alten Bezeichnungsweise folgendermaßen aus:

  • Uran-Radium-Reihe: UI → UX1 → UX2 (→ UZ) → UII → Io → Ra → Rn → RaA → RaB → RaC → RaC' (oder RaC") → RaD → RaE → RaF → RaG
  • Uran-Actinium-Reihe: AcU → UY → Pa → Ac → RdAc (oder AcK) → AcX → An → AcA → AcB → AcC → AcC" (oder AcC') → AcD
  • Thorium-Reihe: Th → MsTh1 → MsTh2 → RdTh → ThX → Tn → ThA → ThB → ThC → ThC' (oder ThC") → ThD

Berechnung der Konzentration von Nukliden einer Zerfallsreihe

Nuklide zerfallen nach einer Kinetik erster Ordnung (vgl. Zerfallsgesetz), so dass die zeitabhängige Konzentration eines einzelnen Nuklids recht einfach zu berechnen ist. Die Fragestellung wird deutlich komplizierter, wenn das Nuklid als Glied einer Zerfallsreihe aus Vorläufernukliden laufend nachgebildet wird. Ein kurzer und übersichtlicher Weg zur Berechnung seiner Konzentration unter dieser Voraussetzung findet sich bei Jens Christoffers (1986);[5] der Autor gibt auch einen Algorithmus zur Programmierung der Berechnung an.

Siehe auch

Weblinks

 <Lang> Commons: Zerfallsreihe – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. Karlsruher Nuklidkarte. Nachdruck der 6. Auflage. Karlsruhe 1998
  2. D. C. Hoffman, F. O. Lawrence, J. L. Mewherter, F. M. Rourke: Detection of Plutonium-244 in Nature. In: Nature 234, 1971, S. 132–134, doi:10.1038/234132a0
  3. E. B. Paul: Nuclear and Particle Physics. North-Holland, 1969, S. 41
  4. C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes. 6. Auflage. Wiley & Sons, New York 1968
  5. https://www.uni-oldenburg.de/fileadmin/user_upload/chemie/ag/occhris/download/pdf1.pdf

Diese Artikel könnten dir auch gefallen



Die letzten News


13.06.2021
Die Taktgeber der Sonne
Nicht nur der prägnante 11-Jahres-Zyklus, auch alle weiteren periodischen Aktivitätsschwankungen der Sonne können durch Anziehungskräfte der Planeten getaktet sein.
13.06.2021
Wenn Schwarze Löcher den Weg für die Sternentstehung in Satellitengalaxien freimachen
Eine Kombination von systematischen Beobachtungen mit kosmologischen Simulationen hat gezeigt, dass Schwarze Löcher überraschenderweise bestimmten Galaxien helfen können, neue Sterne zu bilden.
13.06.2021
Flüssiges Wasser auf Monden sternenloser Planeten
Monde sternenloser Planeten können eine Atmosphäre haben und flüssiges Wasser speichern. Münchner Astrophysiker haben berechnet, dass die Wassermenge ausreicht, um Leben auf diesen wandernden Mond-Planeten-Systemen zu ermöglichen und zu erhalten.
13.06.2021
Solar Orbiter: Neues vom ungewöhnlichen Magnetfeld der Venus
Solar Orbiter ist eine gemeinsame Mission der Europäischen Weltraumorganisation (ESA) und der NASA, die bahnbrechende neue Erkenntnisse über die Sonne liefern wird.
13.06.2021
Quantenbits aus Löchern
Wissenschafter haben ein neues und vielversprechendes Qubit gefunden – an einem Ort, an dem es nichts gibt.
07.06.2021
Gammablitz aus der kosmischen Nachbarschaft
Die hellsten Explosionen des Universums sind möglicherweise stärkere Teilchenbeschleuniger als gedacht: Das zeigt eine außergewöhnlich detaillierte Beobachtung eines solchen kosmischen Gammastrahlungsblitzes.
31.05.2021
Verblüffendes Quantenexperiment wirft Fragen auf
Quantensysteme gelten als äußerst fragil: Schon kleinste Wechselwirkungen mit der Umgebung können zur Folge haben, dass die empfindlichen Quanteneffekte verloren gehen.
31.05.2021
Symmetrie befördert Auslöschung
Physiker aus Innsbruck zeigen in einem aktuellen Experiment, dass auch die Interferenz von nur teilweise ununterscheidbaren Quantenteilchen zu einer Auslöschung führen kann.
31.05.2021
Wie Wasser auf Eisplaneten den felsigen Untergrund auslaugt
Laborexperimente erlauben Einblicke in die Prozesse unter den extremen Druck- und Temperatur-Bedingungen ferner Welten. Fragestellung: Was passiert unter der Oberfläche von Eisplaneten?
31.05.2021
Neues Quantenmaterial entdeckt
Auf eine überraschende Form von „Quantenkritikalität“ stieß ein Forschungsteam der TU Wien gemeinsam mit US-Forschungsinstituten. Das könnte zu einem Design-Konzept für neue Materialien führen.
27.05.2021
Wenden bei Höchstgeschwindigkeit
Physiker:innen beobachten neuartige Lichtemission. und zwar wenn Elektronen in topologischen Isolatoren ihre Bewegungsrichtung abrupt umdrehen.
27.05.2021
Mit Klang die Geschichte der frühen Milchstraße erkunden
Einem Team von Astronominnen und Astronomen ist es gelungen, einige der ältesten Sterne in unserer Galaxie mit noch nie dagewesener Präzision zu datieren.
11.05.2021
Teleskop zur Erforschung von Objekten höchster Dichte im Universum
Eine internationale Gruppe von Astronomen hat erste Ergebnisse eines groß angelegten Programms vorgestellt, bei dem Beobachtungen mit dem südafrikanischen MeerKAT-Radioteleskop dazu verwendet werden, die Theorien von Einstein mit noch nie dagewesener Genauigkeit zu testen.
11.05.2021
Quantencomputing einfach erklärt
„Quantencomputing kompakt“ lautet der Titel eines aktuellen Buchs, das Bettina Just veröffentlicht hat. Die Mathematikerin und Informatikerin, die an der Technischen Hochschule Mittelhessen (THM) lehrt und forscht, behandelt darin ein Teilgebiet der Informationstechnik mit großem Entwicklungspotenzial.
11.05.2021
Auf dem Weg zum kleinstmöglichen Laser
Bei extrem niedrigen Temperaturen verhält sich Materie oft anders als gewohnt.
07.05.2021
Die Entdeckung von acht neuen Millisekunden-Pulsaren
Eine Gruppe von Astronomen hat mit dem südafrikanischen MeerKAT-Radioteleskop acht Millisekunden-Pulsare entdeckt, die sich in Kugelsternhaufen mit hoher Sterndichte befinden.
04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.