Transparenz (Physik)

Transparenz (Physik)

Transparenter, doppelbrechender Calcit-Einkristall

Transparenz (von lateinisch trans „(hin)durch“ und (ap)parere „sich zeigen, scheinen“) ist in der Physik die Fähigkeit von Materie, elektromagnetische Wellen hindurchzulassen (Transmission). Im Alltag wird der Begriff meist auf Licht, also auf den für den Menschen sichtbaren Spektralbereich elektromagnetischer Strahlung, bezogen.

In Anlehnung daran unterscheidet man auch in der Seegangshydrodynamik bzw. Offshoretechnik zwischen hydrodynamisch transparenten Konstruktionen, die Oberflächenwellen durchlassen, und hydrodynamisch kompakten Konstruktionen, die Oberflächenwellen reflektieren.

Grundlagen und Begriffsklärung

Transparenz: Kontaktlinsen aus Kunststoff, Petrischale aus Glas, und Luft

Transparenz ist eine optische Eigenschaft eines Materials; andere optische Eigenschaften sind beispielsweise die Reflektivität und Absorptionsvermögen. Die optischen Eigenschaften von Materialien hängen eng mit den elektrischen Eigenschaften eines Materials zusammen, beispielsweise das Vorhandensein freier Elektronen oder der Bandstruktur. Ist ein Material für einfallende elektromagnetische Strahlung (Photonen) eines mehr oder weniger breiten Frequenzspektrums transparent, kann diese das Material nahezu vollständig durchdringen, wird also kaum reflektiert und kaum absorbiert.

Im Alltag wird ein Material, wie beispielsweise Fensterglas, transparent oder durchsichtig genannt, wenn man Dahinterliegendes relativ klar erkennen kann, das Material also für Strahlung des sichtbaren Spektrums weitgehend durchlässig ist.

Einfallende Photonen wechselwirken je nach Energie mit unterschiedlichen Bestandteilen des Materials, somit ist die Transparenz eines Materials abhängig von der Frequenz (bzw. Wellenlänge) der elektromagnetischen Welle. Materialien, die undurchsichtig für Licht sind, können transparent für andere Wellenlängen des elektromagnetischen Spektrums sein, z. B. Röntgenstrahlen und Radiowellen. Im Bereich der Infrarotstrahlung befinden sich beispielsweise die Schwingungsenergien von Molekülen beziehungsweise Molekülgruppen oder auch der freien Elektronen im Elektronengas von Metallen. Im sichtbaren Bereich liegt die Energie der Photonen im Bereich der Bindungsenergie der Valenzelektronen, welche durch Absorption eines Photons in das Leitungsband angeregt werden können. Das beteiligte Photon wird dabei vollständig „ausgelöscht“. Wird ein Großteil der Photonen absorbiert, ist ein Material undurchsichtig (nachfolgende Effekte wie Rekombination werden hier erstmal vernachlässigt). Die Bandstruktur des Materials ist somit (unter anderem) entscheidend für seine Transparenz.

Wichtig bei der Absorption von Photonen ist, dass diese nur in bestimmten „Energieportionen“ (Quant) erfolgt. Das heißt, nur Photonen einer bestimmten Energie können so absorbiert werden. Photonen mit höherer oder niedriger Energie bleiben unbeeinflusst. Isolator-Materialien wie Glas sind meist transparent, da ihre Bandlücke größer als die Photonenenergie für sichtbares Licht ist. Diese Photonen können daher nicht durch Valenzelektronen absorbiert werden. Die Ursache dafür liegt in der Bandstruktur des Materials, die beispielsweise durch den Abstand der Atome zueinander beeinflusst wird. Dass bei Glas die Valenzelektronen nicht in das Leitungsband angeregt und somit nicht für den Ladungstransport zur Verfügung stehen, bewirkt weiterhin, dass Glas nicht elektrisch leitfähig ist. Bei Halbleitern, die eine geringere Bandlückenenergie besitzen, werden hingegen Photonen höherer Energie (blaues Licht) absorbiert. Vom optischen Gesamteindruck sind diese Materialien daher nicht transparent, auch wenn sie beispielsweise für rotes Licht gesehen transparent sind. Aus der reinen spektralen Transparenz kann jedoch der Farbeindruck nicht direkt abgeleitet werden.

Bloße Lichtdurchlässigkeit wie etwa bei Milchglas ist im Allgemeinen nicht ausschlaggebend, um als transparent bezeichnet zu werden. Bei Milchglas wird das Licht durch eine raue Oberfläche oder durch Teilchen im Material gestreut. Das dabei durchgelassene Licht wird als diffuses Licht bezeichnet, da keine scharfe Abbildung dahinterliegender Objekte erfolgt. Sind nur dunklere und hellere Bereiche sichtbar, spricht man von Transluzenz. Bei schwach lichtdurchlässigen Materialien wird die lichtdurchlässige Eigenschaft statt als Transluzenz auch als Opazität angegeben. Tiefenlicht ist eine nur oberflächliche Transluzenz.

Vorkommen

Transparenz ist meist bei gasförmigen Materialien gegeben (z. B. Luft), aber auch bei manchen flüssigen und festen Stoffen, z. B. klares Wasser, gewöhnliches Glas und einige Kunststoffe. Falls der Grad der Transparenz von der Wellenlänge des Lichtes abhängt, dann ist das transparente Medium getönt. Das kann an bestimmten Metalloxid-Molekülen im Glas oder (größeren) farbigen Partikeln, wie in farbigem Rauch, liegen. Sind viele dieser farbigen Partikel vorhanden, wird das Gas, die Flüssigkeit oder der Festkörper undurchsichtig, z. B. dichter Rauch.

Glas

Das wohl bekannteste transparente feste Material ist Glas. Die meisten Glastypen, die heute technische Bedeutung haben sind Silikatgläser. Die Chemie des Silikatgerüstes sorgt für ein theoretisches Transparenzfenster zwischen 170nm und 5000nm. Dies schließt den für den Menschen sichtbaren Bereich voll ein und geht darüber hinaus. Im UV-Bereich erreichen die wenigsten Silikatgläser signifikante Transparenz unterhalb von 300nm. Ausnahmen sind Quarz- und spezielle hochborhaltige Borosilikatgläser, die auch im UV-C-Bereich noch eine gute Transparenz besitzen. Im IR-Bereich tritt ab etwa 2500nm bereits vereinzelt Absorption durch Wasser auf, was dort die Transparenz mindert, bevor das Silikatnetzwerk ab etwa 4500-5000nm die Transparenz auf Null bringt. Da der sichtbare Bereich des Lichtes Silikatglas nahezu ungehindert passiert, hat es für unsere Augen keine Farbe. Braungläser wie beispielsweise für Bierflaschen oder Medikamente dagegen enthalten Dotierungsmittel, die im sichtbaren Bereich absorbieren und so für unser Auge farbig wirken.

Bedingt transparente Materie

Bedingte Durchsichtigkeiten sind die Phototropie und Elektrotropie.

Phototropie

Phototropes Glas ist transparentes Glas, das auf UV-Licht reagiert. Es wird auch als selbsttönend bezeichnet. Die Phototropie basiert auf einer reversiblen Transformation eingelagerter silberhalogenidhaltiger Ausscheidungen. Bei dem Vorgang wird das Glas eingefärbt.

Einfache Darstellung der phototropen Reaktion.

Je nach Halogenidart im Glas können verschiedene Farben erzeugt werden. Braune oder graue phototrope Gläser werden für die Herstellung von Sonnenbrillen verwendet, die bei großer Helligkeit von allein (rasch) dunkler und bei nachlassender Helligkeit (langsamer) wieder durchsichtiger werden. Der Geschwindigkeitsunterschied beruht darauf, dass sich ein Gleichgewicht zweier gegenläufiger Reaktionen einstellt: Das Dunkelwerden verläuft in einer Reaktion 0. Ordnung (jedes einfallende, in der Wellenlänge geeignete Lichtquant bewirkt eine Molekülumwandlung). Dagegen ist der umgekehrte Prozess eine von der Temperatur abhängige Reaktion 1. Ordnung, die nach einer Exponentialfunktion abläuft (in gleichen Zeiten reagieren gleiche Anteile, vgl. Halbwertszeit). Diese Eigenschaften haben zur Folge, dass sich solche Brillen für das Autofahren nicht so gut eignen, wenn die Helligkeit in schneller Folge wechselt, bei einer Tunneleinfahrt bleibt die Brille (zu) lange dunkel. Bei großer Kälte und großer Helligkeit – im Winter bei Schnee – ist die Brille schwarz; langsam klar wird sie bei Dunkelheit, schnell geht das unter warmem Wasser.

Phototropie spielt auch eine Rolle bei der Photosynthese.

Elektrotropie

Elektrotropes Glas ist eine Form von Glas, welches im normalen Zustand zwar lichtdurchlässig, jedoch undurchsichtig (blickdicht, ähnlich Milchglas) ist und nur durch Anlegen von elektrischer Spannung durchsichtig wird. Dies geschieht mit Hilfe von Flüssigkristallen, welche sich zwischen zwei Schichten von normalem Glas befinden. Technisch gesehen funktionieren diese Scheiben ähnlich wie ein LC-Display. Man setzt elektrotropes Glas als schaltbares Sichtschutzglas ein. Der Nutzer kann selbst entscheiden, wann man durch das Glas hindurchschauen kann und wann nicht. Anwendungsbeispiele sind Glastrennwände in Limousinen (z. B. Maybach 57 und 62) und die Trennscheiben zwischen Führerstand und Panoramaabteil („Lounge“) in den Endwagen des ICE 3 und ICE T, sowie Toilettentüren, die erst beim Verriegeln undurchsichtig werden.[1] Elektrotrope Gläser gehören zu den sogenannten intelligenten Gläsern.

Literatur

  • Stephan A. Jansen, Eckhard Schröter, Nico Stehr (Hrsg.):Transparenz. Multidisziplinäre Durchsichten durch Phänomene und Theorien des Undurchsichtigen, 1. Auflage, VS Verlag, Wiesbaden 2010, ISBN 978-3-531-17435-8.
  • Horst Scholze: Glas- Natur, Struktur und Eigenschaften, 3. Auflage. Springer-Verlag Berlin Heidelberg, Braunschweig 1998, ISBN 3-540-08403-7.
  • Bettine Boltres: When Glass meets Pharma: Insights about glass as primary packaging material, 1.Auflage. ECV Editio Cantor, Bad Wörishofen 2015, ISBN 978-3871934322.

Weblinks

Einzelnachweise

  1. Café Reichard. Abgerufen am 2. Februar 2017.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.