Transmission (Physik)

Transmission (Physik)

Die Transmission (von lat. trans „(hin)durch“ und mittere „schicken“) ist in der Physik eine Größe für die Durchlässigkeit eines Mediums für Wellen, z. B. für Schallwellen oder elektromagnetische Wellen (Licht usw.).

Transmission, Reflexion und Absorption einer Welle durch ein Medium B

Trifft eine Welle, die sich im Medium A (z. B. Luft) bewegt, auf ein Medium B endlicher Dicke (z. B. eine Linse oder eine Wand), so wird sie je nach den Stoffeigenschaften des Hindernisses zum Teil an den Grenzflächen reflektiert und beim Durchqueren ganz oder teilweise absorbiert. Der verbleibende Rest wird durch das Medium B transmittiert und tritt an der gegenüberliegenden Seite des Mediums B wieder aus.

Die austretende Strahlung ist nur dann allein durch die eintretende Strahlung bestimmt, wenn das Hindernis nicht selbst strahlt. Jedes Hindernis strahlt jedoch entsprechend seiner Temperatur (Temperaturstrahlung). Daher ist die austretende Strahlung genau genommen mit der Strahlungstransportgleichung zu berechnen.

Transmissionsgrad

Transmissionsgrad Τ(λ) eines 1 cm dicken Rubins im optischen Bereich.
Das schmale Absorptionsband bei 694 nm ist die Wellenlänge des Rubinlasers.

Der Transmissionsgrad $ \tau $ oder T, eine Materialeigenschaft, ist definiert als der Quotient zwischen der Wellen- oder Schallintensität I hinter und der Intensität I0 vor dem Hindernis:[1]

$ T = \tau = \frac{I}{I_0}. $

Der Transmissionsgrad ist somit ein Maß für „durchgelassene“ Intensität und nimmt Werte zwischen 0 und 1 bzw. 100% an.

(Nicht mit dem Transmissionsgrad zu verwechseln ist der Transmissionsfaktor oder -koeffizient, der sich wie der Reflexionskoeffizient auf die Amplitude statt auf die Intensität bezieht, siehe fresnelsche Formeln.)

Der Transmissionsgrad hängt u. a. ab:

  • von der Dicke des Mediums
  • von der Wellenlänge $ \lambda $ und somit der Frequenz $ f $ des Schalls oder der elektromagnetischen Welle bzw. der Farbe des Lichtes: $ \tau = \tau(\lambda) $ bzw. $ \tau = \tau(f), $ vgl. nebenstehende Abbildung
  • vom Einfallswinkel der Welle.

Mit

  • dem Reflexionsgrad $ \rho $ als Maß für die reflektierte Intensität
  • dem Dissipationsgrad $ \delta $ als Maß für die dissipierte Intensität

lässt sich folgende allgemeine Leistungsbilanz aufstellen:

$ \begin{alignat}{2} & \rho + \delta + && \tau = 1\\ \Leftrightarrow & && \tau = 1 - (\rho + \delta) \end{alignat} $

Akustik

In der Akustik beschreibt der Transmissionsgrad das Vermögen eines Bauteils oder eines Übergangs zwischen zwei schallführenden Bauteilen oder Medien, den Schall zu dämmen. Häufig wird dazu das Schalldämmmaß $ R $ angegeben:

$ R = 10 \lg \frac{I_0}{I}\;\mathrm{dB} = 10 \lg \frac{1}{\tau} \mathrm{dB} = -10 \lg \tau\;\mathrm{dB} $

In der Raumakustik ist es egal, wie die Schallenergie in einem Raum verloren geht:

  • durch Umwandlung (Dissipation) in thermische Energie oder
  • durch Weiterleitung (Transmission) ins Freie bzw. in einen Nachbarraum.

Daher wird in der Akustik der Transmissionsgrad als Teil des Absorptionsgrads $ \alpha $ angesetzt (Maß für die absorbierte Intensität):

$ \begin{align} \alpha = \delta + \tau\\ \Leftrightarrow \tau = \alpha - \delta, \end{align} $

Daraus ergibt sich für den Schall insgesamt folgende Leistungsbilanz:

$ \Rightarrow \rho + \alpha = 1 $

Optik

In der Optik beschreibt der Transmissionsgrad den Anteil des einfallenden Strahlungsflusses oder Lichtstroms, der ein transparentes Bauteil komplett durchdringt (vgl. Remission).

Bei elektromagnetischer Strahlung interessiert meist - anders als in der Akustik - die Gesamt-Emission $ \rho + \tau $ eines Körpers, weniger die Richtung. In diesem Fall ist der Absorptionsgrad ein Maß für die „verlorengegangene“ Intensität:

$ \alpha = \delta $

Daher werden in der Optik meist Absorption und Transmission getrennt behandelt:

$ \begin{alignat}{2} \Rightarrow & \rho + \alpha + && \tau = 1\\ \Leftrightarrow & && \tau = 1 - (\rho + \alpha), \end{alignat} $

Als weitere Maße für die Beschreibung der Transmission werden auch der Kehrwert des Transmissionsgrades, die Opazität, sowie deren logarithmische Formulierung, die Extinktion, verwendet.

Anwendungen:

  • die Durchlassgüte eines Glases
  • in der optischen Messtechnik für eine Methode zur Messung von Staub- oder Gaskonzentrationen, siehe Transmissometer, Fotometer.

Einzelnachweise

  1. Eintrag zu transmittance. In: IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.T06484 Version: 2.1.5.

Diese Artikel könnten dir auch gefallen



Die letzten News


03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.
03.03.2021
Nanoschallwellen versetzen künstliche Atome in Schwingung
Einem deutsch-polnischen Forscherteam ist es gelungen, gezielt Nanoschallwellen auf einzelne Lichtquanten zu übertragen.
03.03.2021
Nicht verlaufen! – Photonen unterwegs im dreidimensionalen Irrgarten
Wissenschaftlern ist es gelungen, dreidimensionale Netzwerke für Photonen zu entwickeln.
25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.