Schirmdämpfung

Schirmdämpfung

Die Schirmdämpfung ist eine dimensionslose Messgröße, die die Wirksamkeit einer Abschirmung quantifiziert. Während die Abschirmung eine technische Maßnahme ist, ist die Schirmdämpfung ein Maß für die Qualität eines Schirms in der elektromagnetischen Verträglichkeit. Der Schirm übernimmt dabei die Funktion – z. B. nach dem Prinzip des Faradayschen Käfigs – ein Raumgebiet, das er umgibt, gegenüber einem äußeren elektrischen Feld zu schützen, seine Wirksamkeit wird mit der Schirmdämpfung erfasst. Die Schirmdämpfung beschreibt auch die Schutzwirkung gegenüber dem magnetischen Feld und dem elektromagnetischen Feld. Bei geschirmten Leitungen wird ebenfalls oft eine Schirmdämpfung angegeben, die übliche, technisch eindeutige Messgröße zur Erfassung der Schirmwirkung einer Leitung lautet aber Transferimpedanz oder veraltet Kopplungswiderstand.

Der MIL-STD 285, die militärische Verteidigungsgerätenorm VG 95370, Teil 15, oder der US-amerikanische Standard NSA 65–6 definieren gängige Messverfahren zur Schirmdämpfung. Der IEEE-STD 299 hat 1997 den MIL-STD 285 ersetzt.

Definition

Die Schirmdämpfung ist als das Verhältnis der Leistungsdichte S1 an einem Raumpunkt vor dem Einbringen eines Schirms zur Leistungsdichte S2 am selben Raumpunkt nach Einbringen eines Schirms definiert. Die Leistungsdichten besitzen die Einheit W/m². Die Schirmdämpfung ist dimensionslos und wird im logarithmischen Maß üblicherweise in Dezibel ausgedrückt. In Dezibel folgt für die Schirmdämpfung (se für engl. shielding effectiveness):

$ \frac {se_p}{\mathrm{dB}}= 10 \cdot \log_{10}{\frac{S_1}{S_2}} $

Auf den elektrischen Feldanteil E übertragen lautet die Formel:

$ \frac {se_e}{\mathrm{dB}}= 20 \cdot \log_{10}{\frac{E_1}{E_2}} $

Auf den magnetischen Feldanteil H übertragen lautet die Formel:

$ \frac {se_h}{\mathrm{dB}}= 20 \cdot \log_{10}{\frac{H_1}{H_2}} $

Dabei wird vorausgesetzt, dass der Poynting-Vektor S, mit den Feldgrößen E und H für transversalelektromagnetische Felder über die Gleichung

$ \vec S = \vec E \times \vec H $

miteinander in Beziehung stehen. Diese Einschränkung ist im MIL-STD 285 mit Bezug auf die Wellenimpedanz des elektromagnetischen Feldes niedergelegt.

Die nach den o. a. Gleichungen ermittelte Schirmdämpfung setzt sich zusammen aus den Beiträgen der Reflexion einer elektromagnetischen Welle, der Absorption der Welle innerhalb eines Schirmmaterials und der Mehrfachreflexion innerhalb des Materials. Bei Annahme einer ebenen Welle wäre die Größe mit Index 1 die einfallende Feldgröße, die Größe mit Index 2 wäre die durch den Schirm transmittierte Feldgröße. Deren Verhältnis ergibt die Schirmdämpfung, die in den Gleichungen im logarithmischen Maß dargestellt wird. In allen drei o. g. Gleichungen bezieht sich der Index 1 auf das Feld ohne und der Index 2 auf das Feld mit Schirmung am selben Raumpunkt.

Ortsabhängigkeit

Die Größen mit Index 2 liegen innerhalb des geschirmten Raums. Je nach Art des Schirmes können für die Größen innerhalb des Schirms erhebliche Abweichungen von der letztgenannten Gleichung entstehen, weil dann durch den Einfluss des Schirms, z. B. durch seine Geometrie oder durch Aperturen in der Schirmhülle, nicht in allen Fällen zwingend von einem transversalelektromagnetischen Feld ausgegangen werden darf. Die Schirmdämpfung ist deshalb hochgradig ortsabhängig und kann innerhalb einer Schirmeinrichtung erheblich variieren. Die Festlegung des Ortes an dem die Schirmdämpfung innerhalb der Abschirmung ermittelt werden soll, ist daher zwingend notwendig. Übliche Methoden legen den Raummittelpunkt einer Schirmeinrichtung als Bezugsort fest. Dort ist aber die Dämpfung erwartungsgemäß am größten, so dass sich diese Ortswahl oft nicht zur Erkennung einer Schwachstelle im Schirm eignet. Messvorschriften schreiben für den Messort auch Abstände zwischen einem Meter und dreißig Zentimetern zur Schirmwand vor.

Degradation

Um die Mechanismen zu erläutern, die zur Degradation der Schirmdämpfung führen, wird kurz die Wirkung eines Schirms erläutert. Ausführlichere Darstellungen der Wirkungsweisen finden sich unter dem Stichwort Abschirmung (Elektrotechnik).

Wirkungsweisen eines Schirms und Einfluss auf die Schirmdämpfung

Die Schirmdämpfung quantifiziert die Wirkung eines Schirms gegenüber elektrischen, magnetischen oder elektromagnetischen Feldern. Die Wirkungsweisen von Abschirmungen gegenüber solchen Feldern sind im Folgenden kurz zusammengefasst.

Schirmung eines niederfrequenten elektrischen Feldes

Gegenüber elektrostatischen Feldern und niederfrequenten elektrischen Feldern wirkt ein elektrisch leitender Schirm nach dem Prinzip des Faradayschen Käfigs.

Schirmung eines niederfrequenten magnetischen Feldes

Gegenüber niederfrequenten magnetischen Feldern wirkt ein Schirm aufgrund der hohen Permeabilität des Schirmmaterials, die dazu führt, dass sich die magnetische Flussdichte im Schirmmaterial konzentriert. Ein niederimpedanter Beidraht oder koaxialer Leitungsschirm bewirkt eine magnetische Schirmung weil der in den niederimpedanten Draht induzierte Strom mit seinem Magnetfeld dem anregenden Magnetfeld entgegenwirkt. Dieser Mechanismus funktioniert nur mit beidseitig aufgelegtem Leitungsschirm oder Beidraht, denn bei einseitig aufgelegtem Schirm kann kein Strom fließen.

Schirmung eines elektromagnetischen Feldes

Gegenüber hochfrequenten elektromagnetischen Feldern wirkt ein elektrisch leitender Schirm gegen den elektrischen Feldanteil nach dem Prinzip des Faradayschen Käfigs. Gegenüber dem hochfrequenten magnetischem Feldanteil wirkt ein Schirm aufgrund von Ausgleichsströmen, die ihrerseits ein die äußere einfallende magnetische Feldkomponente kompensierendes Gegenfeld erzeugt (vgl. Lenzsche Regel). Damit ein Ausgleichsstrom fließen kann, müssen z. B. Leitungsschirme zweiseitig angeschlossen werden. Mit zunehmender Frequenz steigt die Schirmdämpfung durch den Skineffekt im Schirmmaterial, der das in die Schirmwand eindringende Feld von der Schirminnenseite fernhält. Schirme können auch aus verlustbehafteten Materialien bestehen, die die elektromagnetische Feldenergie in Wärme umwandeln.

Degradationsmechanismen

Die Schirmdämpfung wird durch Öffnungen (Leckagen) im Schirm degradiert. Dazu zählen auch schmale Spalte, bei denen die maximale Ausdehnung (die Spaltlänge) der dominierende Effekt für die Degradation der Schirmdämpfung ist. Der tatsächliche Felddurchgriff an einer Apertur für den ideal leitenden Schirm ist dem Oberflächenstrom proportional, der sich am Ort der Apertur durch die Feldbeaufschlagung einstellt.

Weiterhin wird eine Schirmwirkung durch verminderte elektrische Leitfähigkeit eines Schirmmaterials oder gegenüber niederfrequenten Magnetfeldern durch eine geringe Permeabilität des Schirmmaterials beeinträchtigt.

Gegenüber hochfrequenten elektromagnetischen Feldern wird ein Schirm grundsätzlich erheblich geschwächt, wenn kein Ausgleichsstrom fließen kann, z. B. bei einseitiger Schirmauflegung an einer geschirmten Leitung, oder wenn keine hinreichende Absorption in einem verlustbehafteten Material stattfindet. Ein Schirm wirkt dann nur noch kapazitiv, während die ausschlaggebende ungewollte induktive Einkopplung des magnetischen Feldanteils direkt auf die geschirmten Baugruppen oder Leiter wirkt.

Messverfahren

Bekannte Standards für Messverfahren zur Ermittlung der Schirmdämpfung sind der MIL-STD 285[1], der seit 1997 aufgehoben ist, aber häufig weiter angewandt wird, die militärische Verteidigungsgerätenorm VG 95370, Teil 15, oder der US-amerikanische Standard NSA 65–6. Abgelöst hat den MIL-STD 285 die Vorschrift IEEE-STD-299.[2]

Weblinks

Literatur

  • H. Kaden: Wirbelströme und Schirmung in der Nachrichtentechnik. 2., vollst. neu bearb. Auflage. Springer Verlag, 2006, ISBN 3-540-32569-7 (Erstausgabe: 1959).

Einzelnachweise

  1. Military Standard MIL-STD-285 (Memento vom 14. Juli 2007 im Internet Archive)
  2. Fehlersuche bei geschirmten Räumen. (PDF; 417 kB)

Diese Artikel könnten dir auch gefallen



Die letzten News


04.05.2021
Handfeste Hinweise auf neue Physik
Das Fermilab (USA) hat heute erste Daten aus dem Myon g-2 Experiment veröffentlicht, welche die Messwerte des gleichnamigen, 2001 durchgeführten Experiments am Brookhaven National Laboratory bestätigen.
04.05.2021
Neuer Exoplanet um jungen sonnenähnlichen Stern entdeckt
Astronomen aus den Niederlanden, Belgien, Chile, den USA und Deutschland bilden neu entdeckten Exoplaneten „YSES 2b“ direkt neben seinem Mutterstern ab.
07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.