Nichtlineare Optik

Nichtlineare Optik

Die nichtlineare Optik (kurz NLO) ist in der Physik ein Teilgebiet der Optik der elektromagnetischen Wellen, bei denen der Zusammenhang zwischen elektrischem Feld und elektrischer Polarisation in einem Medium nicht linear, sondern höheren Grades ist.

Grundlagen

Den Ausgangspunkt moderner optischer Beschreibungen bilden die Maxwell-Gleichungen, die unter anderem einen mathematischen Formalismus zur Beschreibung elektromagnetischer Wellen im Vakuum sowie in Materie bilden. Breitet sich eine elektromagnetische Welle in einem Medium aus, werden die Elektronen darin zum Schwingen angeregt und senden ihrerseits neue Wellen aus. Dies wird durch die elektrische Flussdichte beschrieben:

$ \vec{D} = \varepsilon_0 \vec{E} + \vec{P} $

Dabei ist $ \varepsilon_0 $ die elektrische Feldkonstante, $ \vec{E} $ das elektrische Feld der Welle und $ \vec{P} $ die elektrische Polarisation. Für niedrige Intensitäten gilt näherungsweise, dass die Polarisation linear mit dem elektrischen Feld ansteigt:

$ \vec{P} = \varepsilon_0 \chi \vec{E} $

wobei $ \chi $ die elektrische Suszeptibilität darstellt. Für sehr hohe Intensitäten gilt dies jedoch nicht mehr und es müssen Terme höherer Ordnung berücksichtigt werden, da die Intensität proportional zum Quadrat des elektrischen Feldes ist und die elektrische Polarisation nicht beliebig linear ansteigen kann:

$ \vec{P} = \varepsilon_0 \sum_n \chi^{(n)} \vec{E}^n = \varepsilon_0 \left[ \chi^{(1)} \vec{E} + \chi^{(2)} \vec{E}^2 + \chi^{(3)}\vec{E}^3 + \dots \right] $

Dabei ist $ \chi^{(n)} $ im Allgemeinen ein Tensor höherer Stufe. Die Wellengleichung, die sich durch die Einführung Terme höherer Ordnung ergibt, lautet:

$ \left( \Delta - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \right) \vec{E} = \mu_0 \frac{\partial^2}{\partial t^2} \vec{P}^{NL} $

Dabei ist $ \Delta $ der Laplace-Operator, n der Brechungsindex des Mediums, c die Lichtgeschwindigkeit und $ \vec{P}^{NL} $ die Summe aller nichtlinearen Terme der Polarisation.

Effekte und Anwendungen

Frequenzverdopplung
Summenfrequenzerzeugung
Differenzfrequenzerzeugung

Licht als elektromagnetische Welle wird im Allgemeinen durch eine räumlich und zeitlich oszillierende Funktion dargestellt:

$ \vec E (\vec r, t) = \vec E_0 \cdot \cos{(\vec{k}\vec{r}-\omega t)} = \frac{1}{2}\vec E_0\cdot ( e^{i(\vec k \vec r - \omega t)} + e^{-i(\vec k \vec r - \omega t)} ) $

mit dem Ort $ \vec r $, der Zeit t, dem Wellenvektor $ \vec k $, der Kreisfrequenz $ \omega $ und der Amplitude $ \vec E_0 $. Einsetzen dieser Funktion oder Überlagerungen verschiedener Lichtwellen mit unterschiedlichen Frequenzen in die nichtlineare elektrische Polarisation liefert verschiedene Terme in denen neue Frequenzen enthalten sind. Nicht alle der in dieser Rechnung auftretenden Effekte treten jedoch gleichzeitig in Erscheinung. Licht mit unterschiedlicher Frequenz besitzt aufgrund der Frequenzabhängigkeit des Brechungsindexes, also der Dispersion, in einem Medium unterschiedliche Phasengeschwindigkeiten. Dies führt zu einer destruktiven Interferenz der Wellen. Damit der gewünschte Effekt auftritt, muss die Phasenanpassungsbedingung für die beteiligten Frequenzen erfüllt sein:

$ n(\omega_1) = n(\omega_2) $

Das heißt, die Brechungsindizes der beiden Lichtwellen mit den Kreisfrequenzen $ \omega_1 $ und $ \omega_2 $ müssen gleich sein. Diese Bedingung ist nur mittels doppelbrechenden Materialien zu erreichen, indem die optischen Polarisationen der Lichtwellen geeignet gewählt werden.

Einige nichtlineare optische Effekte sind:

Nichtlineare Optiken bzw. optisch nichtlineare Materialien finden Anwendung beim Bau von optischen Schaltern und Bauelementen. So befinden sich z. B. in grünen Laserpointern häufig Dioden, die infrarotes Licht emittieren, welches zum Pumpen von Nd:YVO4-Lasern (Wellenlänge 1064 nm, Infrarot) genutzt wird, welche wiederum mit einem nichtlinearen Kristall frequenzverdoppelt wird (Wellenlänge 532 nm, grün). Außerdem können sie als Speicher in der (digitalen) optischen Daten- und Bildverarbeitung eingesetzt werden.

Medien mit nichtlinearen Effekten

Nichtlineare optische Effekte treten nur in Medien auf, bei denen die Terme mit Suszeptibilitäten höherer Ordnung als 1 nicht verschwinden, also ungleich Null sind. Für Effekte zweiter Ordnung handelt es sich meist um Kristalle, die auch einen Piezoeffekt aufweisen. Die am häufigsten verwendeten Kristalle mit Nichtlinearität in zweiter Ordnung sind Beta-Bariumborat (BBO), Kaliumdihydrogenphosphat (KDP), Ammoniumdihydrogenphosphat (ADP), Lithiumniobat, Lithiumjodat, Silberthiogalat.[1]

Literatur

  • Robert W. Boyd: Nonlinear Optics. 3. Auflage. Academic Press, New York 2008, ISBN 978-0-12-369470-6.
  • Bahaa E. A. Saleh, Malvin C. Teich: Grundlagen der Photonik. 2., vollständig überarbeitete Auflage. Wiley VCH, Weinheim 2008, ISBN 978-3-527-40677-7.

Weblinks

Einzelnachweise

  1. Wolfgang Zinth, Ursula Zinth: Optik. 2. Auflage. Oldenbourg, München 2009, ISBN 978-3-486-58801-9, S. 255.

Ähnliche Artikel wie "Nichtlineare Optik" auf cosmos-indirekt.de

25.01.2021
Optik - Teilchenphysik
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
28.10.2019

Und es ward…ein neuartiges Licht:Lichtwellen mit intrinsischer Chiralität halten Spiegelmoleküle zuverlässig auseinander
Licht bietet den schnellsten Weg, um rechts- und linkshändige chirale Moleküle zu unterscheiden, was für viele Anwendungen in Chemie und Biologie unerlässlich ist.
02.10.2019

Topologie auf der Spur: ein ultraschnelles Verfahren kitzelt kritische Informationen aus Quantenmaterialien heraus
Topologische Isolatoren sind exotische Quantenmaterialien, die dank einer besonderen elektronischen Struktur entlang ihrer Oberflächen und Kanten elektrischen Strom leiten wie ein Metall.
02.05.2019

Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?
Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden.
17.01.2019
Elektrodynamik - Quantenoptik
Wie Moleküle im Laserfeld wippen
Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger Dipol induziert.
28.11.2018
Optik - Teilchenphysik
Ein Jet von Atomen – Erste Linse für extrem ultraviolettes Licht entwickelt
Wissenschaftler vom Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben die erste refraktive Linse entwickelt, die extrem ultraviolette Strahlen fokussiert.
30.06.2017
Optik - Quantenphysik
Wechselwirkung von Licht und Materie - Ein perfektes Attosekunden-Experiment
Mit einem sogenannten Attosekunden-Experiment ist es Physikern der Waseda-Universität in Japan, des National Research Council in Kanada und des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin gelungen, die Wellenfunktion eines ionisierten Elektrons komplett zu messen und zu beschreiben.

Diese Artikel könnten dir auch gefallen



Die letzten News


07.04.2021
Myon g-2: Kleines Teilchen mit großer Wirkung
Das Myon g-2-Experiment des Fermilab in den USA steht vor einem Sensationsmoment, der die Geschichte der Teilchenphysik neu schreiben könnte. Und vielleicht sogar Hinweise auf noch unbekannte Teilchen im Universum gibt.
02.04.2021
Zwei merkwürdige Planeten
Uranus und Neptun habe beide ein völlig schiefes Magnetfeld.
02.04.2021
Der erste interstellare Komet könnte der ursprünglichste sein, der je gefunden wurde
Neue Beobachtungen mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) deuten darauf hin, dass der abtrünnige Komet 2I/Borisov einer der ursprünglichsten ist, die je beobachtet wurden.
02.04.2021
Erstmals Atominterferometer im Weltraum demonstriert
Atominterferometer erlauben hochpräzise Messungen, indem sie den Wellencharakter von Atomen nutzen. Sie werden zum Beispiel für die Vermessung des Schwerefelds der Erde eingesetzt oder um Gravitationswellen aufzuspüren. Weitere Raketenmissionen sollen folgen.
02.04.2021
Sendungsverfolgung für eine Quantenpost
Quantenkommunikation ist abhörsicher, aber bislang nicht besonders effizient.
25.03.2021
Astronomen bilden Magnetfelder am Rand des Schwarzen Lochs von M 87 ab
Ein neuer Blick auf das massereiche Objekt im Zentrum der Galaxie M 87 zeigt das Erscheinungsbild in polarisierter Radiostrahlung.
24.03.2021
Die frühesten Strukturen des Universums
Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren.
24.03.2021
Können Sternhaufen Teilchen höher beschleunigen als Supernovae?
Ein internationales Forschungsteam hat zum ersten Mal gezeigt, dass hochenergetische kosmische Strahlung in der Umgebung massereicher Sterne erzeugt wird. Neue Hinweise gefunden, wie kosmische Strahlung entsteht.
24.03.2021
Neue Resultate stellen physikalische Gesetze in Frage
Forschende der UZH und des CERN haben neue verblüffende Ergebnisse veröffentlicht.
21.03.2021
Elektronen eingegipst
Eine scheinbar einfache Wechselwirkung zwischen Elektronen kann in einem extremen Vielteilchenproblem zu verblüffenden Korrelationen führen.
21.03.2021
Chromatischer Lichtteilcheneffekt für die Entwicklung photonischer Quantennetzwerke enthüllt
Es ist ein weiterer Schritt auf dem Weg zur Entwicklung von Anwendungen der Quanteninformationsverarbeitung. In einem Schlüsselexperiment ist es gelungen, die bislang definierten Grenzen für Photonenanwendungen zu überschreiten.
18.03.2021
Stratosphärische Winde auf Jupiter erstmals gemessen
Mit dem Atacama Large Millimeter/submillimeter Array (ALMA) hat ein Team von Astronomen zum ersten Mal die Winde in der mittleren Atmosphäre des Jupiters direkt gemessen.
18.03.2021
Was Gravitationswellen über Dunkle Materie verraten
Die NANOGrav-Kollaboration hat kürzlich erste Hinweise auf sehr niederfrequente Gravitationswellen beobachtet.
18.03.2021
Filamente des kosmischen Netzwerks entdeckt
Einem internationalen Team von Astronominnen und Astronomen gelang zum ersten Mal die direkte Kartierung kosmischer Filamente im jungen Universum, weniger als zwei Milliarden Jahre nach dem Urknall. Die Beobachtungen zeigen sehr leuchtschwache Galaxien, und geben Hinweise auf deren Vorfahren.
18.03.2021
Blaupausen für das Fusionskraftwerk
Am 21 März 1991 erzeugte die Experimentieranlage ASDEX Upgrade im Max-Planck-Institut für Plasmaphysik (IPP) in Garching das erste Plasma.
12.03.2021
Was die reflektierte Strahlung von Exoplaneten verraten könnte
Als 1995 der erste Planet außerhalb unseres Sonnensystems gefunden wurde, war das eine Sensation, die später mit dem Physik-Nobelpreis gewürdigt wurde.
12.03.2021
Theoretische Lösung für Reisen mit Überlichtgeschwindigkeit
Wenn Reisen zu fernen Sternen innerhalb der Lebenszeit eines Menschen möglich sein sollen, muss ein Antrieb gefunden werden, der schneller als Lichtgeschwindigkeit ist.
12.03.2021
Quantenkontrolle mit Fernbedienung
Quantentechnologien basieren auf der präzisen Kontrolle des Zustands und der Wechselwirkung einzelner Quantenteilchen.
12.03.2021
Wie Gesteine die Bewohnbarkeit von Exoplaneten beeinflussen
Die Verwitterung von Silikatgesteinen trägt massgeblich dazu bei, dass auf der Erde ein gemässigtes Klima herrscht.
12.03.2021
Roboter lernen schneller mit Quantentechnologie
Künstliche Intelligenz ist Teil unseres modernen Lebens und eine entscheidende Frage für praktische Anwendungen ist, wie schnell solche intelligenten Maschinen lernen können.
11.03.2021
Mikroskopisch kleine Wurmlöcher als theoretische Möglichkeit
In vielen Science-Fiction-Filmen spielen Wurmlöcher eine wichtige Rolle – als Abkürzung zwischen zwei weit entfernten Orten des Weltalls.
09.03.2021
Das am weitesten entfernte Radio-Leuchtfeuer im frühen Universum
Quasare sind die hellen Zentren von Galaxien, die von schwarzen Löchern angetrieben werden, und aktiv Materie ansammeln.
06.03.2021
Eine nahe, glühend heiße Super-Erde
In den vergangenen zweieinhalb Jahrzehnten haben Astronomen Tausende von Exoplaneten aus Gas, Eis und Gestein aufgespürt.
06.03.2021
Vulkane könnten den Nachthimmel dieses Planeten erhellen
Bisher haben Forschende keine Anzeichen auf globale tektonische Aktivität auf Planeten ausserhalb unseres Sonnensystems gefunden.
03.03.2021
„Ausgestorbenes Atom“ lüftet Geheimnisse des Sonnensystems
Anhand des „ausgestorbenen Atoms“ Niob-92 konnten Forscherinnen Ereignisse im frühen Sonnensystem genauer datieren als zuvor.