Mars Telecommunications Orbiter

Mars Telecommunications Orbiter

Mars Telecommunications Orbiter (NASA)

Der Mars Telecommunications Orbiter (kurz MTO) war als der erste reine Kommunikationssatellit geplant, der auf die Reise zum Mars geschickt werden sollte. Der Satellit sollte von Lockheed Martin für die NASA gebaut werden. Für MTO war ein Start für 2009 geplant und nach etwa 10 Monaten Flug sollte er im September 2010 in eine Marsumlaufbahn einschwenken, um von dort wissenschaftliche Daten von Raumsonden, die sich auf der Marsoberfläche befinden, zur Erde zu funken. Die Kosten der Mission sollten etwa 500 Millionen US-Dollar betragen. Im Juli 2005 ist die Mission von der NASA aus Budgetgründen gestrichen worden.

Mission

Mars Telecommunications Orbiter sollte Kommunikation mit der Erde per Laser erproben

Der Mars Telecommunications Orbiter sollte als erste Marssonde über keine wissenschaftlichen Instrumente zur Erforschung des Mars verfügen, sondern nur zur Kommunikation zwischen dem Mars und der Erde dienen. Er wurde von der NASA oft als der erste „Hub“ des interplanetaren Internets bezeichnet. Mit Hilfe des MTO sollte die Menge der zur Erde übertragenen Daten drastisch erhöht werden, so würde z. B. das Mars Science Laboratory durch den MTO 100 Mal so viele Daten übermitteln können wie ohne ihn. Außerdem sollte die Verfügbarkeit des Mars Telecommunications Orbiters die zukünftigen Raumsonden von der Notwendigkeit befreien, direkt mit der Erde kommunizieren zu müssen. Dadurch wären die Kommunikationsanlagen der Sonden kleiner und leichter, was dem Gewichtsanteil der wissenschaftlichen Nutzlast zugutekommen würde.

Als erste Raumsonde sollte der Mars Telecommunications Orbiter die Möglichkeit der Kommunikation per Laser auf planetaren Entfernungen testen. Bei dem Mars Laser Communication Demonstration Project sollten Geschwindigkeiten von 10 MBit pro Sekunde demonstriert werden, als Ziel wurden sogar 30 Mbit pro Sekunde gesetzt.

Außerdem sollte der MTO eine kleine Kugel von der Größe eines Fußballs in den Marsorbit freisetzen, um sie bis zu einer Entfernung von 6.000 km zu verfolgen. Die Daten dieses Experimentes sollten später für die Rückführung von Marsproben zur Erde nützlich sein, da bei solch einer Mission die Kapsel mit den Proben im Orbit gefunden und abgefangen werden muss, um sie zur Erde zurückzubringen.

Technik

Der Mars Telecommunications Orbiter sollte etwa 2.000 kg wiegen, wobei das meiste Gewicht auf den Treibstoff entfallen würde, der zum Erreichen der gewünschten Marsumlaufbahn in 5.000 km Höhe nötig ist. Da für einen hohen Orbit ein treibstoffsparendes Aerobraking-Manöver in der Atmosphäre unmöglich ist, müsste beim Eintritt in die Umlaufbahn der gesamte Bremsimpuls der Sonde durch ihre Triebwerke aufgebracht werden.

Im Orbit angekommen, würde die Sonde über 7 m umfassen und neben den großen Solarpanels zur Stromerzeugung über eine etwa 2-3 m große Antenne zur Datenübertragung verfügen. Mit dieser Antenne sollte die Sonde mit dem Deep Space Network (DSN) der NASA im X-Band und Ka-Band kommunizieren können. Weitere Antennen für den UHF- und X-Band wären auf einer beweglichen Plattform montiert, um mit Sonden auf der Marsoberfläche oder in der Marsumlaufbahn zu kommunizieren.

Ablauf der Mission

Es war geplant den Mars Telecommunications Orbiter 2009 mit einer Rakete der Atlas-V-Klasse von Cape Canaveral aus zu starten, der etwa 10 Monate später im September 2010 in eine Marsumlaufbahn eintreten sollte. Damit sollte er einen Monat vor der Ankunft des Mars Science Laboratory (dessen Start 2009 stattfinden sollte, dann auf 2011 verschoben wurde) seinen Platz auf einem 5.000 km hohen Marsorbit einnehmen. Dieser Orbit ist ungefähr 20 Mal so hoch, wie der Orbit einer wissenschaftlichen Marssonde, die so niedrig fliegen muss, um der zu untersuchenden Marsoberfläche möglichst nah zu sein. Da für den Orbit eines Kommunikationssatelliten andere Prioritäten gelten, nämlich von einer Landestelle aus gesehen möglichst lange über dem Horizont zu sein, wurde für den MTO ein so hoher Orbit gewählt. Außerdem kann ein Marssatellit in einem hohen Orbit fast rund um die Uhr im Kontakt mit der Erde stehen, da er viel seltener vom Mars abgedeckt wird.

Der MTO wurde für eine garantierte Missionsdauer von sechs Jahren ausgelegt, danach sollte er mindestens weitere vier Jahre um den Mars kreisen und dabei jeden Tag bis zu 15 Gigabit von Daten aller zukünftiger Marssonden aller Arten und Nationen zur Erde senden. Den Start des nächsten Kommunikationssatelliten als Ersatz für den MTO plante die NASA etwa für das Jahr 2018.

Später tauchte der für 2011 bzw. 2013 geplante Mars Science and Telecommunications Orbiter (MSTO) in den Plänen der NASA auf, der einige Aufgaben des MTO hätte übernehmen sollen. MSTO wurde jedoch aufgrund ungenauer Zielsetzung eingestellt[1].

Siehe auch

Einzelnachweise

  1. Executive Summary (englisch)

Weblinks

 <Lang> Commons: Mars Telecommunications Orbiter – Sammlung von Bildern, Videos und Audiodateien

Diese Artikel könnten dir auch gefallen



Die letzten News


27.01.2021
Aus Weiß wird (Extrem)-Ultraviolett
Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) haben eine neue Methode entwickelt, um die spektrale Breite von extrem-ultraviolettem (XUV) Licht zu modifizieren.
27.01.2021
Neue Möglichkeiten bei Suche nach kalter dunkler Materie
Das Baryon-Antibaryon-Symmetrie-Experiment (BASE) am Antiprotonen-Entschleuniger des CERN hat neue Grenzen für die Masse von Axion-ähnlichen Teilchen – hypothetischen Teilchen, die Kandidaten für dunkle Materie sind – festgelegt und eingeschränkt, wie leicht sie sich in Photonen, die Teilchen des Lichts, verwandeln können.
25.01.2021
Weltraumteleskop findet einzigartiges Planetensystem
Das Weltraumteleskop CHEOPS entdeckt sechs Planeten, die den Stern TOI-178 umkreisen.
25.01.2021
Ladungsradien der Quecksilberkerne 207Hg und 208Hg wurden erstmals vermessen
Was hält Atomkerne im Innersten zusammen? Das können Physikerinnen und Physiker anhand von Präzisionsmessungen des Gewichts, der Größe und der Form von Atomkernen erkennen.
25.01.2021
Physiker erzeugen und leiten Röntgenstrahlen simultan
Röntgenstrahlung ist meist ungerichtet und schwer zu leiten.
25.01.2021
Optimale Information über das Unsichtbare
Wie vermisst man Objekte, die man unter gewöhnlichen Umständen gar nicht sehen kann? Universität Utrecht und TU Wien eröffnen mit speziellen Lichtwellen neue Möglichkeiten.
23.01.2021
Physiker filmen Phasenübergang mit extrem hoher Auflösung
Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern.
23.01.2021
Die Entstehung des Sonnensystems in zwei Schritten
W
23.01.2021
Die Entstehung erdähnlicher Planeten unter der Lupe
Innerhalb einer internationalen Zusammenarbeit haben Wissenschaftler ein neues Instrument namens MATISSE eingesetzt, das nun Hinweise auf einen Wirbel am inneren Rand einer planetenbildenden Scheibe um einen jungen Stern entdeckt hat.
20.01.2021
Älteste Karbonate im Sonnensystem
Die Altersdatierung des Flensburg-Meteoriten erfolgte mithilfe der Heidelberger Ionensonde.
20.01.2021
Einzelnes Ion durch ein Bose-Einstein-Kondensat gelotst.
Transportprozesse in Materie geben immer noch viele Rätsel auf.
20.01.2021
Der Tanz massereicher Sternenpaare
Die meisten massereichen Sterne treten in engen Paaren auf, in denen beide Sterne das gemeinsame Massenzentrum umkreisen.
20.01.2021
Sonnenaktivität über ein Jahrtausend rekonstruiert
Ein internationales Forschungsteam unter Leitung der ETH Zürich hat aus Messungen von radioaktivem Kohlenstoff in Baumringen die Sonnenaktivität bis ins Jahr 969 rekonstruiert.
20.01.2021
Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms
Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich.
20.01.2021
Welche Rolle Turbulenzen bei der Geburt von Sternen spielen
Aufwändige und in diesem Umfang bis dahin noch nicht realisierte Computersimulationen zur Turbulenz in interstellaren Gas- und Molekülwolken haben wichtige neue Erkenntnisse zu der Frage gebracht, welche Rolle sie bei der Entstehung von Sternen spielt.
20.01.2021
Wie Aerosole entstehen
Forschende der ETH Zürich haben mit einem Experiment untersucht, wie die ersten Schritte bei der Bildung von Aerosolen ablaufen.
13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.