Wie bekommen massereiche Sterne ihre Masse

Neues aus der Forschung

Meldung vom 09.11.2015

Astronomen finden Scheibe um jungen, massereichen Stern


151109-0631_medium.jpg
Johnston et al. 2015. A Keplerian-like disk around the forming O-type star AFGL 4176
 
Künstlerische Darstellung der Gas- und Staubscheibe um den massereichen jungen Stern AFGL 4176, die Astronomen jetzt nachgewiesen haben.
K. G. Johnston und ESO

Wie erreichen Sterne Massen von mehr als dem Hundertfachen der Sonnenmasse? Schon seit langem wird angenommen, dass Gas- und Staubscheiben rund um die jungen Sterne eine Rolle dabei spielen könnten, Materie auf einige der hernach massereichsten Sterne zu lenken. Jetzt hat ein Team von Astronomen, zu dem auch Forscher des MPIA gehören, erstmals eine stabile Scheibe rund um einen der massereichsten jungen Sterne unserer Galaxie entdeckt. Die Ergebnisse sind am 29. Oktober 2015 in der Fachzeitschrift Astrophysical Journal Letters veröffentlicht worden.

Die Massen von Sternen liegen zwischen rund 10% der Masse unserer Sonne und dem mehr als hundertfachen der Sonnenmasse. Entstehen all diese verschiedenen Sterne auf dieselbe Weise, unabhängig von der beachtlichen Variation ihrer Größe? Auf diese in den letzten Jahrzehnten durchaus umstrittene Forschungsfrage hat jetzt eine Forschergruppe, zu der auch MPIA-Astronomen gehören, neues Licht geworfen.

Die Astronomen unter der Leitung von Katharine Johnston von der Universität Leeds (und ehemalige Postdoktorandin des MPIA), darunter auch die MPIA-Forscher Thomas Robitaille, Henrik Beuther, Hendrik Linz und Roy van Boekel, fanden erstmals klare Hinweise auf eine stabile Gas- und Staubscheibe die einen jungen sehr massereichen Stern umgibt.

Das Beobachtungsobjekt trägt die Katalognummer AFGL 4176 und ist ein sehr massereicher Stern (O-Stern) im südlichen Sternbild Zentaur (Centaurus), direkt neben dem Kreuz des Südens, rund 14.000 Lichtjahre von der Erde entfernt.

Die inneren Regionen solcher gerade in Entstehung begriffener massereicher Sterne sind hinter einer Hülle aus Gas und Staub verborgen. Mithilfe des ALMA-Observatoriums, das Beobachtungen im Millimeter- und Submillimeterbereich erlaubt, konnten die Astronomen in das Innere der Hülle blicken und dort eine scheibenartige, rotierende Struktur nachweisen. Um diese Beobachtung zu bestätigen, bereiteten die Astronomen eine Art Gegenüberstellung vor: mehr als 10,000 simulierte Modellscheiben mit verschiedenen Eigenschaften. Simulierte Bilder und Spektren dieser "kosmischen Verdächtigen" wurden dann mit den Beobachtungsdaten verglichen.

Die beste Übereinstimmung ergab sich für eine stabile ("Kepler'sche") Scheibe, für die sowohl der Gravitationseinfluss des Zentralsterns als auch jener der Scheibenmaterie selbst eine wichtige Rolle spielt. Der Scheibenradius ist rund 2000 Mal so groß wie der mittlere Abstand der Erde von der Sonne, bei einer Gesamtmasse der Scheibe von 12 Sonnenmassen. Der Stern hat eine Masse von rund 25 Sonnenmassen.

Solche Scheiben könnten eine Schlüsselrolle für das Wachstum massereicher Sterne spielen und insbesondere erklären, wie sich trotz des beträchtlichen Strahlungsdruck des jungen Sterns noch hinreichend viel zusätzliche Materie ansammeln kann, wie es für die Entstehung der massereichsten bekannten Sterne notwendig wäre. Aber bislang hatten stabile Scheiben um die massereichsten Stern-Embryonen (Sterne vom Typ O) nicht sicher nachgewiesen werden können - ob solche Scheiben als Erklärungsmöglichkeiten überhaupt infrage kamen, war daher unklar.

Die Beobachtungen von Johnston und ihren Kollegen zeigen deutlich, dass zumindest eine der massereichsten Sterne überhaupt in gleicher Weise entstehen können wie ihre masseärmeren Verwandten: mit Mechanismen, die trotz der Unterschiede in Skalen und Zeitverlauf dieselben sind wie bei masseärmeren Sternen, und mit Materie, die von einer Keplerscheibe auf den wachsenden jungen Stern geleitet wird.

Die hohe Qualität der ALMA-Beobachtungen weckt Erwartungen, dass sich auch weitere wichtige offene Fragen zur Entstehung massereicher Sterne mit dieser Art von Beobachtung klären lassen sollten. Allgemein sind direkte Vergleiche zwischen Beobachtungsdaten und den Vorhersagen von Simulationen der Sternentstehung von Interesse. Speziell für eine Besonderheit sehr massereicher Sterne hoffen die Astronomen, mithilfe derartiger Beobachtungen eine direkte Erklärung zu finden: Solche Sterne sind fast immer Teil von Doppel- oder allgemeiner Mehrfachsternsystemen. Hochaufgelöste Abbildungen der innersten Bereiche in den Frühphasen der Sternentstehung könnten direkt zeigen, wie sich die Vorläufer der verschiedenen Komponenten eines solchen massereichen Mehrfachsystems bilden.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung