Supermikroskop beobachtet Lithium-Atome auf Wanderschaft - Einblicke in Minibatterie aus Graphen

Neues aus der Forschung

Meldung vom 28.11.2018

Man kann es schlicht und einfach eine Sensation nennen, was hier Wissenschaftlern aus Stuttgart, Ulm und Dresden gelungen ist. Mit Hilfe des Supermikroskops SALVE konnten sie in atomarer Auflösung zeigen, wie sich Lithium-Ionen bei elektrochemischen Be- und Entladungsprozessen verhalten. Sie haben damit nachgewiesen, wie die reversible Lithium-Aufnahme in einer Nanozelle abläuft, die lediglich aus einer Doppellage Graphen besteht. Veröffentlicht wurden diese für die Batterieforschung hochrelevanten Ergebnisse jüngst im renommierten Wissenschaftsjournal Nature.


181130-1808_medium.jpg
 
Modelldarstellung einer mehrlagigen, dicht gepackten Speicherung von Lithium zwischen zwei Graphenlagen.
Matthias Kühne, Felix Börrnert, Sven Fecher, Mahdi Ghorbani-Asl, Johannes Biskupek, Dominik Samuelis, Arkady V. Krasheninnikov, Ute Kaiser & Jurgen H. Smet
Reversible superdense ordering of lithium between two graphene sheets
Nature, published online: 26 November 2018
DOI: 10.1038/s41586-018-0754-2


„Verbindungen aus reinem Kohlenstoff eignen sich bestens für den Einsatz in Lithium-basierten elektrochemischen Speichersystemen. Dabei wird Lithium vorübergehend in das Wirtsmaterial aus Kohlenstoff eingelagert“, erklärt Dr. Jurgen Smet, Physiker am Max-Planck-Institut für Festkörperforschung (MPI-FKF) Stuttgart.

Wie genau das aussieht, haben Smet und die Ulmer Physikerin Professorin Ute Kaiser in einem Gemeinschaftsprojekt untersucht. Ziel des von der Baden-Württemberg Stiftung geförderten Forschungsvorhabens war es, die Speicherung und Diffusion von Lithium in zwei-dimensionalen Kohlenstoffverbindungen wie Graphen auf atomarer Ebene sichtbar zu machen und zu verstehen.


 
Blick in das vier Meter Hohe Supermikroskop SALVE

Dafür hat Smet mit seinen Doktoranden Matthias Kühne und Sven Fecher eine „Minibatterie“ entwickelt, die aus einer Doppellage Graphen aufgebaut ist. Zur Erinnerung: Graphen gehört zu den sogenannten 2D-Materialien und besteht aus einer einzelnen Kohlenstoffatomlage. An einem Ende der 0,3 Nanometer dünnen, länglich geformten elektrochemischen Minizelle haben die Stuttgarter Wissenschaftler auf der Oberseite einen Elektrolyttropfen aufgetragen, in dem ein Lithiumsalz gelöst ist. „Damit der Elektrolyt die elektronenmikroskopische Aufnahme nicht stört, musste er genau positioniert und mechanisch stabilisiert werden“, so Smet, Leiter der Forschungsgruppe Festkörper-Nanophysik am MPI-FKF. Dafür griffen die Stuttgarter auf einen Trick zurück: Zugesetzte Polymere, die unter UV-Licht aushärten, machen aus dem Tropfen einen gelartigen Festkörper, der bleibt, wo er ist. Wird nun an der Nanozelle eine Spannung angelegt, wandern die Lithium-Ionen aus dem Elektrolyttropfen in den Zwischenraum der Graphen-Doppellage und lagern sich dort ein (Interkalation). Wenn die Potentialdifferenz entfernt wird, löst sich die eingelagerte Lithium-Ansammlung wieder auf und das Lithium wandert zurück in den Elektrolyttropfen.

Die Überraschung: In der Nanozelle aus Graphen lagert sich das Lithium mehrlagig ein

Doch in welcher Form wird das Lithium gespeichert? Wie verläuft der Prozess der Interkalation? Auf atomarer Ebene sind solche Vorgänge „in situ“ – also „live“ – nur sehr schwer zu beobachten. Nun gelang es dem Ulmer Team um Ute Kaiser mit dem Supermikroskop SALVE weltweit zum ersten Mal überhaupt, die Interkalation von Lithium zwischen Graphen auf atomarer Ebene strukturgenau aufzuzeigen. „Das Ergebnis hat uns sehr überrascht: Im Gegensatz zu herkömmlichen graphitbasierten Batteriezellen, wo sich immer nur einzelne, wenig dicht gepackte Lithiumlagen zwischen zwei Kohlenstofflagen einlagern, zeigten sich hier mehrere sehr dicht gepackte Lithiumlagen“, sagen Dr. Felix Börrnert und Dr. Johannes Biskupek, Projektmitarbeiter aus der von Professorin Ute Kaiser geleiteten Abteilung Materialwissenschaftliche Elektronenmikroskopie der Universität Ulm. Um wirklich sicher zu gehen, wurden die Be- und Entladungsexperimente mit der „Minibatterie“ am SALVE-Mikroskop mehrfach – und über viele Wochen hinweg – immer wieder reproduziert. Außerdem musste sichergestellt werden, dass die TEM-Abbildungen auch wirklich Lithium darstellen. Dafür wurde die Elementzusammensetzung der beobachteten Strukturen mit Hilfe des zum SALVE-Gerät gehörenden Elektronenenergieverlust-Spektrometers chemisch untersucht.

SALVE liefert einzigartige Einblicke in die Nanozelle

„Es ist eine enorme wissenschaftliche Herausforderung, die Diffusion eines so leichten Elements wie Lithium in einem ‚Graphen-Sandwich‘ elektronenmikroskopisch sichtbar zu machen“, sagt Professorin Ute Kaiser. Herkömmliche Transmissionselektronenmikroskope (TEM) sind dafür nicht geeignet. Die Aufnahmen sind entweder zu kontrastarm, oder es kommt zu massiven Schäden an den Materialien durch die Elektronenstrahlen bei der Untersuchung selbst. „Mit SALVE und dank eines Tricks – wir haben nämlich die regelmäßige Gitterstruktur der Graphen-Bilage aus der elektronenmikroskopischen Abbildung herausrechnen können – gelang es uns letztendlich, beide Herausforderungen zu meistern“, so Kaiser. Das Öffnungs- und Farbfehler-korrigierte Niederspannungstransmissionselektronenmikroskop erlaubt bei einer Spannung von 80kV hochauflösende und kontrastreiche Abbildungen in einer subatomaren Auflösung von 75 Pikometern. Es arbeitet mit Niederspannung, die vergleichsweise materialschonend ist und damit auch die Untersuchung von empfindlichen 2D-Materialien wie Graphen ermöglicht. Entwickelt wurde das Gerät im Rahmen der mehrjährigen Forschungsinitiative „Sub-Ångstrøm Low-Voltage Electron microscopy“ (SALVE) der Universität Ulm.

Für die „in situ“-Experimente der reversiblen Lithium-Einlagerung in der Nanozelle haben die Ulmer und Stuttgarter Forscher gemeinsam viele Wochen am SALVE-Mikroskop gearbeitet. Besonders fasziniert waren die Wissenschaftler von der Erkenntnis, wie perfekt die mikroskopischen Aufnahmen zu den theoretisch postulierten Konfigurationen passen, die die Kollegen aus Dresden berechnet haben. Anhand von sogenannten Dichte-Funktional-Theorie-Rechnungen von Lithium konnten die Physiker Dr. Mahdi Ghorbani-Asl und Dr. Arkady Krasheninnikov vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) zeigen, dass bei einer bestimmten Beladung/Spannung die Bildung mehrlagiger Lithium-Einlagerungen wahrscheinlich ist. „Ausschlaggebend für die Wahrscheinlichkeit einer bestimmten Struktur ist letztendlich die Frage, wie stabil die jeweilige Phase unter bestimmten Umständen ist“, erläutert Krasheninnikov.

Grundlegende Erkenntnisse für die Batterieforschung

Unterstützt wurde das Forschungsprojekt von der Baden-Württemberg Stiftung. Thematisch eingebettet ist die Arbeit außerdem sowohl in der „Graphene Flaghip“ Initiative der Europäischen Union sowie von Ulmer Seite aus im neuen Exzellenzcluster zur Batterieforschung. „Die Ergebnisse dieses Forschungsprojektes sind von grundlegender Bedeutung für die Batterieforschung, geben sie doch Einblicke in den Ablauf elementarer Prozesse der elektrochemischen Energiespeicherung“, sind sich Smet und Kaiser einig. Und wer weiß, vielleicht werden die neuen Erkenntnisse das Design zukünftiger kohlenstoffbasierter Speichersysteme inspirieren.

(Andrea Weber-Tuckermann)


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung