Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X

Neues aus der Forschung

Meldung vom 26.11.2018

Die von Juli bis November an der Fusionsanlage Wendelstein 7-X im Max-Planck-Institut für Plasmaphysik (IPP) in Greifswald gelaufenen Experimente brachten höhere Werte für die Dichte und den Energieinhalt des Plasmas sowie lange Entladungsdauern bis zu 100 Sekunden – Rekordergebnisse für Anlagen vom Typ Stellarator.


181130-1749_medium.jpg
 
Blick in das Plasmagefäß der Fusionsanlage Wendelstein 7-X
Max-Planck-Institut für Plasmaphysik
Erfolgreiche zweite Experimentrunde mit Wendelstein 7-X


Inzwischen hat die nächste Runde des schrittweisen Ausbaus von Wendelstein 7-X begonnen. Sie soll die Anlage fit machen für höhere Heizleistungen und längere Entladungen. Wendelstein 7-X, die weltweit größte Fusionsanlage vom Typ Stellarator, soll die Kraftwerkseignung dieses Bautyps untersuchen.

Im Verlauf der schrittweisen Aufrüstung von Wendelstein 7-X wurde das Plasmagefäß seit September letzten Jahres mit einer Innenverkleidung ausgestattet. Kacheln aus Grafit schützen seither die Gefäßwände. Hinzu kam der sogenannte Divertor, mit dem sich Reinheit und Dichte des Plasmas regeln lassen. In zehn breiten Streifen an der Wand des Plasmagefäßes folgen die Divertor-Kacheln der Kontur des Plasmarandes. Sie bedecken speziell die Wandbereiche, auf die Teilchen aus dem Rand des Plasmas gezielt gelenkt werden.


 
Das Rekordplasma mit einem Energieinhalt von über einem Megajoule

Nach drei Monaten des Experimentierens mit der neuen Ausrüstung begann Ende 2017 die nächste Ausbau-Runde; unter anderem wurden neue Messgeräte und Heizsysteme installiert. Ab Juli 2018 wurden die Experimente wieder aufgenommen.

Hatte der Divertor bereits zuvor seine gute Wirkung gezeigt (siehe PI 4/2018 http://www.ipp.mpg.de/de/aktuelles/presse/pi/2018/04_18), so konnten die Plasmawerte mit der aufgestockten Plasmaheizung und gereinigten Gefäßwänden jetzt deutlich gesteigert werden. Die neu installierte Neutralteilchen-Heizung schießt schnelle Wasserstoffatome in das Plasma hinein, die ihre Energie über Stöße an die Plasmateilchen abgeben. Das Ergebnis waren hohe Plasmadichten bis zu 2 x 10**20 Teilchen pro Kubikmeter – Werte, wie sie für ein künftiges Kraftwerk ausreichen. Zugleich erreichten die Ionen und Elektronen des Wasserstoff-Plasmas die beachtliche Temperatur von 20 Millionen Grad Celsius.

Stellarator-Rekordwerte konnte Wendelstein 7-X für die im Plasma gespeicherte Energie erzielen: Mit starker Mikrowellen-Heizung überstieg der Energieinhalt des Plasmas erstmalig ein Megajoule, ohne dass die Gefäßwand zu heiß wurde. Bei guten Plasmakenngrößen gelangen zudem langlebige Plasmen von 100 Sekunden Dauer – ebenfalls einer der bislang besten Stellarator-Werte.

Diese erfreulichen Resultate brachten dem Projekt große Aufmerksamkeit auf den diesjährigen internationalen Konferenzen. Auch Bundesforschungsministerin Anja Karliczek ließ es sich nicht nehmen, die Ergebnisse zu kommentieren: „Glückwunsch an das Team des Wendelstein 7-X zu dem neuen Weltrekord. Der Weg ist richtig – so konnten wichtige Erkenntnisse für den künftigen Einsatz von Fusionskraftwerken gewonnen werden. Fusionsenergie könnte neben den Erneuerbaren Energien DIE Energiequelle der Zukunft sein. Die Forscher in Greifswald haben mit ihrer Arbeit dazu einen wichtigen Schritt getan. Ich wünsche dem Team viel Erfolg auch bei seinen weiteren Arbeiten.“

Mitte Oktober liefen die letzten Experimente; inzwischen hat die nächste Ausbaurunde an Wendelstein 7-X begonnen. Um die Heizenergie weiter steigern zu können, ohne die Gefäßwand zu überlasten, werden in den kommenden zwei Jahren die jetzigen Graphitplatten des Divertors durch wassergekühlte Elemente aus kohlenstofffaserverstärktem Kohlenstoff ersetzt. So ausgerüstet, wird man sich schrittweise an 30 Minuten andauernde Plasmen heranarbeiten. Dann lässt sich überprüfen, ob Wendelstein 7-X seine Optimierungsziele auch im Dauerbetrieb – dem wesentlichen Plus der Stellaratoren – erfüllen kann.

Hintergrund

Ziel der Fusionsforschung ist es, ein klima- und umweltfreundliches Kraftwerk zu entwickeln. Ähnlich wie die Sonne soll es aus der Verschmelzung von Atomkernen Energie gewinnen. Weil das Fusionsfeuer erst bei Temperaturen über 100 Millionen Grad zündet, darf der Brennstoff – ein dünnes Wasserstoffplasma – nicht in Kontakt mit kalten Gefäßwänden kommen. Von Magnetfeldern gehalten, schwebt er nahezu berührungsfrei im Inneren einer Vakuumkammer.

Den magnetischen Käfig von Wendelstein 7-X erzeugt ein Ring aus 50 supraleitenden, etwa 3,5 Meter hohen Magnetspulen. Ihre speziellen Formen sind das Ergebnis ausgefeilter Optimierungsrechnungen. Obwohl Wendelstein 7-X keine Energie erzeugen wird, soll die Anlage beweisen, dass Stellaratoren kraftwerkstauglich sind. Mit Wendelstein 7-X soll die Qualität des Plasmaeinschlusses in einem Stellarator erstmals das Niveau der konkurrierenden Anlagen vom Typ Tokamak erreichen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung