Neue Einblicke in die Sternenkinderstube im Orionnebel

Neues aus der Forschung

Meldung vom 08.01.2019

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Nachbarschaft / Publikation in Nature.


190108-1926_medium.jpg
 
Ansicht des Orionnebels erstellt durch das Hubble-Weltraumteleskop. Die Aufnahme wurde während105 Erdumläufen des Teleskops erstellt und ist eine der detailliertesten Ansichten des Nebels.

Neue Einblicke in die Sternenkinderstube im Orionnebel
Universität zu Köln

Der Sternwind eines neugeborenen Sterns im Orionnebel verhindert, dass weitere neue Sterne entstehen. Zu diesem Ergebnis kommt ein internationales Team unter Leitung von Wissenschaftlern und Wissenschaftlerinnen der Universitäten Leiden und Köln, sowie unter Beteiligung des Sonderforschungsbereiches 956 “Bedingungen und Auswirkungen der Sternentstehung – Astrophysik, Instrumentierung und Labor“ anhand von Daten des Stratosphären-Observatoriums für Infrarot-Astronomie (SOFIA) der NASA.

Dies ist überraschend, da man bisher davon ausging, dass andere Prozesse wie etwa explodierende Sterne, sogenannte Supernovae, für die Regulierung der Sternenentstehung verantwortlich sind. Die Beobachtungen mit SOFIA legen allerdings nahe, dass junge Sterne Winde erzeugen, die das für die Entstehung neuer Sterne erforderliche Material wegwehen. Die Publikation „Disruption of the Orion Molecular Core 1 by the stellar wind of the massive star θ1 Ori C“ wurde im Fachjournal Nature veröffentlicht.

Der Orionnebel ist einer der am besten erforschten und meist kartierten Objekte des Nachthimmels. Er ist die Sternenkinderstube, die der Erde am nächsten liegt und liefert wichtige Erkenntnisse darüber, wie Sterne entstehen. Ein Gasschleier macht diesen Nebel besonders eindrucksvoll, verhindert aber auch die Sicht auf die Sternbildungsprozesse. Infrarotes Licht kann diesen Schleier allerdings durchdringen, so dass spezielle Observatorien wie SOFIA die Geheimnisse der Sternentstehung lüften können.

Im Herzen des Nebels liegt eine kleine Gruppe junger, massiver und leuchtender Sterne. SOFIA-Beobachtungen mit dem hochauflösenden Empfänger für Ferninfrarot-Spektroskopie GREAT (German Receiver for Terahertz Frequenciues) enthüllen erstmals, dass die starken Sternwinde des hellsten jungen Sterns Theta Orionis C eine große Menge Material aus der Wolke, in der der Stern entstanden ist, weggefegt hat. Dies kann man sich vorstellen wie bei einem Schneepflug, der die Straße räumt, indem er Schnee während der Fahrt an den Rand drückt. „Dieser Wind ist für eine riesige Blase rund um die zentralen Sterne verantwortlich“ erklärt Cornelia Pabst von der Universität Leiden (Niederlande), die Hauptautorin der Studie. „Er durchbricht die Wolke und verhindert so die Geburt neuer Sterne.“

„Die großräumige Orion C+ Beobachtung zeigt, dass solche großräumigen Beobachtungen mit SOFIA/upGREAT möglich sind. Im Vergleich zu früheren Instrumenten erlaubt der Multipixel-SOFIA/upGREAT Empfänger die Beobachtung großer Regionen in kürzerer Zeit, etwa 80-mal schneller als mit dem Einzelpixel-HIFI-Empfänger der ESA Cornerstone Herschel Mission“, sagt Ronan Higgins, der Projektleiter von Kölner Seite.

SOFIA ist ein modifiziertes Flugzeug Boeing 747 SP, das mit einem 2.7 m-Durchmesser Teleskop ausgestattet ist. Es ist ein gemeinsames Projekt der NASA und des Deutschen Zentrums für Luft- und Raumfahrt (DLR). Da die Boeing über dem Großteil des Wasserdampfes der Erdatmosphäre fliegt, der ansonsten Infrarotlicht abblockt, können sie die physikalischen Eigenschaften von Sternenwinden erforschen. Wissenschaftler nutzen das GREAT-Instrument an SOFIA, um die Spektrallinien ionisierten Kohlenstoffs zu ermitteln und so eine Art chemischen Fingerabdruck erstellen zu können.

GREAT/upGREAT, der „German Receiver for Astronomy at Terahertz Frequencies“, wurde durch ein Konsortium deutscher Forschungsinstitute (MPI für Radioastronomie/MPIfR, Bonn und KOSMA/Universität zu Köln, in Zusammenarbeit mit dem DLR‐Institut für Planetenforschung, Berlin, und dem MPI für Sonnensystemforschung, Göttingen) entwickelt und gebaut. Projektleiter für GREAT (PI) ist Jürgen Stutzki (Universität zu Köln), stellvertretender Projektleiter (Co‐PI) ist Bernd Klein (MPIfR Bonn). Die Entwicklung des Instruments ist finanziert mit Mitteln der beteiligten Institute, der Max‐Planck‐Gesellschaft, der Deutschen Forschungsgemeinschaft und der Deutschen Raumfahrtagentur."


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung