Mit Quantencomputer chemische Bindungen simuliert

Neues aus der Forschung

Meldung vom 24.07.2018

Eine internationale Forschungsgruppe hat in Innsbruck die weltweit erste quantenchemische Simulation auf einem Ionenfallen-Quantencomputer durchgeführt. Die Quantensimulation von chemischen Prozessen könnte in Zukunft viele Probleme in der Chemie lösen helfen und so zum Beispiel neue Impulse für die Materialwissenschaft, Medizin und Industriechemie geben.


180727-0134_medium.jpg
 
Die Wissenschaftler simulierten mit einem Quantencomputer die Energiezustände der Bindungen von molekularem Wasserstoff und Lithiumhydrid.
Cornelius Hempel, Christine Maier, Jonathan Romero, Jarrod McClean, Thomas Monz, Heng Shen, Petar Jurcevic, Ben Lanyon, Peter Love, Ryan Babbush, Alán Aspuru-Guzik, Rainer Blatt, Christian Roos
Quantum chemistry calculations on a trapped-ion quantum simulator
Physical Review X 2018
DOI: 10.1103/PhysRevX.8.031022


In dem Experiment am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften untersuchten die Wissenschaftler um Cornelius Hempel und Thomas Monz einen vielversprechenden Weg zur Modellierung chemischer Bindungen und Reaktionen mit Hilfe von Quantencomputern. „Selbst die größten Supercomputer haben Mühe, alles andere als die einfachste Chemie zu modellieren. Quantencomputer, die die Natur simulieren, erschließen hier eine völlig neue Möglichkeit, Materie zu verstehen. Sie geben uns ein neues Werkzeug an die Hand, um Probleme in der Materialwissenschaft, Medizin und Industriechemie mit Hilfe von Simulationen zu lösen“, sagt Cornelius Hempel, der 2016 vom IQOQI an die University of Sydney ging. Da Quantencomputer noch in den Kinderschuhen stecken, bleibt unklar, welche Probleme diese Geräte am effektivsten lösen werden können, aber viele sind sich einig, dass die Quantenchemie eine der ersten „Killer-Apps“ dieser neuen Technologie sein wird.

Breite Anwendung für Quantenchemie

Die Quantenchemie versucht die komplizierten Bindungen und Reaktionen von Molekülen mit Hilfe der Quantenmechanik zu verstehen. Viele Details von chemischen Prozessen können selbst mit den größten und schnellsten Supercomputern nicht simuliert werden. Durch die Modellierung dieser Prozesse mit Hilfe von Quantencomputern erwarten die Wissenschaftler ein besseres Verständnis. Damit könnten Wege für chemische Reaktionen erschlossen werden, die weniger Energie benötigen, und die Entwicklung neuer Katalysatoren ermöglichen. Dies hätte enorme Auswirkungen auf die Industrie, wie zum Beispiel in der Produktion von Düngemitteln. Weitere mögliche Anwendungen sind die Entwicklung organischer Solarzellen und besserer Batterien durch verbesserte Materialien sowie die Nutzung neuer Erkenntnisse bei der Entwicklung personalisierter Medikamente.


 
Blick in das Innsbrucker Quantenlabor der Forschungsgruppe um Rainer Blatt

Einfache chemische Bindung simuliert

Am Institut für Quantenoptik und Quanteninformation in Innsbruck verwendeten die Wissenschaftler einen Ionenfallen-Quantencomputer mit 20 Quantenbits und simulierten auf bis zu vier Quantenbits die Energiezustände der Bindungen von molekularem Wasserstoff und Lithiumhydrid. „Wir haben diese relativ einfachen Moleküle gewählt, weil sie bereits sehr gut verstanden werden und mit klassischen Computern simuliert werden können“, sagt Thomas Monz vom Institut für Experimentalphysik der Universität Innsbruck. „So können wir die Ergebnisse der Quantencomputer direkt überprüfen und gewinnen wichtige Erfahrungen für deren Weiterentwicklung.“ Cornelius Hempel ergänzt: „Dies ist ein wichtiger Schritt in der Entwicklung dieser Technologie, bei dem wir Vergleichsmaßstäbe setzen, nach Fehlern suchen und notwendige Verbesserungen planen können.“

Anstatt die bisher genaueste oder größte Simulation anzustreben, konzentrierte sich das Team auf das, was in einem vielversprechenden quantenklassischen Hybrid-Algorithmus, dem sogenannten Variational Quantum Eigensolver oder VQE, schief gehen kann. Indem sie verschiedene Wege untersuchten, wie die chemische Fragestellung im Quantencomputer kodiert werden kann, analysierten die Forscher die Möglichkeiten, wie Fehler, die in den heute noch unvollkommenen Geräten unweigerlich auftreten und deren Nutzung in naher Zukunft noch im Wege stehen, unterdrückt werden können. „Neben den supraleitenden Quantenbits ist die Ionenfallen-Technologie die führende Plattform für die Entwicklung eines Quantencomputers“, sagt der Innsbrucker Quantencomputer-Pionier Rainer Blatt. „Die Quantenchemie ist ein Beispiel, wo sich die Vorteile eines Quantencomputers schon sehr bald in konkreten Anwendungen zeigen wird.“

Die Ergebnisse der Forschungsgruppen um Rainer Blatt und den amerikanischen Chemiker Alán Aspuru-Guzik wurden nun in der Fachzeitschrift Physical Review X veröffentlicht und entstanden unter anderem mit der finanziellen Unterstützung des österreichischen Wissenschaftsfonds FWF und der Europäischen Kommission.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung