Mars: Der Planet, der einen ganzen Ozean voll Wasser verlor

Neues aus der Forschung

Mars: Der Planet, der einen ganzen Ozean voll Wasser verlor

Meldung vom 06.03.2015

Einst hat ein großer Ur-Ozean die Marsoberfläche bedeckt. Er beinhaltete mehr Wasser als das Nordpolarmeer


150306-2327_medium.jpg
 
Künstlerische Darstellung des Mars vor vier Milliarden Jahren.
Illustration: ESO/M. Kornmesser
G. Villanueva et al. 2015. Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science
DOI: 10.1126/science.aaa3630

Einst hat ein großer Ur-Ozean die Marsoberfläche bedeckt. Er beinhaltete mehr Wasser als das Nordpolarmeer und bedeckte einen größeren Anteil der Planetenoberfläche als der Atlantik auf der Erde. Diese Erkenntnis gewann ein internationales Team aus Wissenschaftlern, das mit dem Very Large Telescope zusammen mit Instrumenten am W. M. Keck-Observatorium und der Infrared Telescope Facility der NASA über einen Zeitraum von sechs Jahren die Planetenatmosphäre beobachtete. Daraus erstellten sie eine Karte mit den Wassereigenschaften in unterschiedlichen Teilen der Atmosphäre des Mars. Die Ergebnisse sind online in Science erschienen.

Laut der neuen Studie hätte der junge Planet vor vier Milliarden Jahren genug Wasser gehabt, um die ganze Oberfläche mit einer 140 Meter tiefen, flüssigen Schicht zu bedecken. Allerdings ist es wahrscheinlicher, dass sich das Wasser zu einem Ozean vereinte, der beinahe die Hälfte der Nordhalbkugel auf dem Mars bedeckte und in manchen Regionen eine Tiefe von mehr als 1,6 Kilometern erreichte.

„Unsere Untersuchungen liefern eine zuverlässige Schätzung, wie viel Wasser einst auf dem Mars vorhanden war, und zwar indem wir bestimmt haben, wie viel Wasser in den Weltraum verloren ging“, erläutert Geronimo Villanueva, der als Wissenschaftler am Goddard Space Flight Center der NASA in Greenbelt, Maryland, in den USA arbeitet und der Erstautor des neuen Fachartikels ist. „Mit dieser Arbeit können wir die Geschichte des Wassers auf dem Mars besser verstehen.“

Die neue Schätzung basiert auf genauen Beobachtungen zweier geringfügig unterschiedlicher Formen von Wasser in der Marsatmosphäre. Die eine ist die bekannte Form des Wasser, die aus zwei Wasserstoff- und einem Sauerstoffatom besteht, also H2O. Die andere ist HDO, auch halbschweres Wasser genannt, eine natürlich vorkommende Abweichung, in der ein Wasserstoffatom durch eine schwerere Form ersetzt wird, dem sogenannten Deuterium.

Da die deuterierte Form schwerer als normales Wasser ist, geht es weniger leicht durch Verdunstung in den Weltraum verloren. Je mehr Wasser der Planet also in den Weltraum abgibt, desto größer ist das Verhältnis von HDO zu H2O in dem Wasser, das übrigbleibt [1].

Die Forscher konnten die chemischen Fingerabdrücke der beiden Wassersorten mit dem Very Large Telescope der ESO in Chile, bzw. mit Instrumenten am W.M. Keck-Observatorium und der Infrared Telescope Facility der NASA auf Hawaii unterscheiden [2]. Indem sie das Verhältnis von HDO zu H2O vergleichen, können Wissenschaftler messen, um wie viel sich der Anteil von HDO vergrößert hat, und können hierdurch bestimmen, wie viel Wasser in den Weltraum verloren ging. Das wiederum erlaubt Schätzungen über die Menge an Wasser auf dem Mars in der Vergangenheit.

In der nun veröffentlichten Arbeit stellte das Team die Verteilung von H2O und HDO mehrmals innerhalb eines Zeitraums von knapp sechs Erdenjahren – das sind etwa drei Marsjahre – in einer Karte dar. Entstanden sind daraus für jedes einzelne Jahr planetenumfassende Schnappschüsse der Verteilung und des Verhältnisses beider Wassersorten.

Ulli Käufl von der ESO, der für den Bau eines der Instrumente, die in dieser Arbeit verwendet wurden, verantwortlich war und Koautor der neuen Veröffentlichung ist, fügt hinzu: „Ich bin abermals überwältigt, welche Leistungsfähigkeit astronomische Teleskope in Bezug auf die Möglichkeit der Untersuchung anderer Planeten von der Erde aus haben: Wir haben einen ehemaligen Ozean in einer Entfernung von 100 Millionen Kilometern gefunden!

Das Team hat sich besonders für die Regionen nahe des Nord- und Südpols interessiert, da die polaren Eiskappen das größte bekannte Wasserreservoir des Planeten sind. Bei dem Wasser, das dort eingelagert ist, geht man davon aus, dass es die Evolution des Wassers auf dem Mars dokumentiert hat, und zwar von der feuchten Noachischen Periode, die vor etwa 3,7 Milliarden Jahren endete, bis hinein in die Gegenwart.

Die neuen Ergebnisse zeigen, dass das Niederschlagswasser in der Nähe der Polarregionen im Vergleich zum Meerwasser auf der Erde um den Faktor sieben angereichert war, vorausgesetzt, dass das Wasser in den Polkappen des Mars um das Achtfache angereichert ist. Um solch ein hohes Anreicherungslevel zu bekommen, muss der Mars ein Wasservolumen verloren haben, das 6,5 mal größer ist, als das momentane Volumen der Polkappen. Das Volumen des einstigen Ozeans auf dem Mars muss mindestens 20 Millionen Kubikkilometer betragen haben.

Angesichts der heutigen Marsoberfläche könnte sich der Ozean möglicherweise an den Northern Plains befunden haben, welche man aufgrund ihres niederen Geländes schon länger als guten Kandidaten erachtet hat. Ein frühzeitlicher Ozean an dieser Stelle hätte 19% der Planetenoberfläche bedeckt – zum Vergleich, der Atlantische Ozean nimmt 17% der Erdoberfläche ein.

„Wenn Mars so viel Wasser verloren hat, gab es höchstwahrscheinlich länger Wasser auf der Oberfläche, als bisher angenommen, was darauf hindeutet, dass er auch länger bewohnbar war“, ergänzt Michael Mumma, leitender Wissenschaftler am Goddard und Zweitautor des Artikels.

Möglicherweise hatte der Mars einst sogar noch mehr Wasser, von dem sich ein Teil unter der Oberfläche eingelagert haben könnte. In der fortdauernden Suche nach Untergrundwasser könnten sich die Karten als nützlich erweisen, da sie Mikroklimata und Veränderungen im Laufe der Zeit im Gehalt des Niederschlagswassers aufzeigen.

Endnoten

[1] In den Ozeanen auf der Erde kommt auf 3200 H2O-Moleküle ein HDO-Molekül.

[2] Obwohl Sonden auf der Marsoberfläche, bzw. im Orbit des Planeten detaillierte in situ-Messungen liefern können, sind sie nicht dafür geeignet, die Eigenschaften der ganzen Marsatmosphäre zu beobachten. Dies lässt sich am besten mittels Infrarotspektrographen an großen Teleskopen auf der Erde erledigen.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung