Eine Nachricht aus dem Himmel

Neues aus der Forschung

Meldung vom 21.01.2015

Verborgene magnetische Signale


150121-2133_medium.jpg
 
Festplatte aus dem Himmel: Der Pallasite Meteorit enthält noch Informationen aus dem frühen Solarsystem.
© Natural History Museum, London.
James F. J. Bryson, Claire I. O. Nichols, Julia Herrero-Albillos, Florian Kronast, Takeshi Kasama, Hossein Alimadadi, Gerrit van der Laan, Francis Nimmo, Richard J. Harrison. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature, 2015; 517 (7535): 472
DOI: 10.1038/nature14114

Geologen der Universität Cambridge haben an BESSY II bislang verborgene magnetische Signale in Meteoriten entdeckt. Sie legen Zeugnis ab von Magnetfeldern im Gestein während der frühen Phase des Sonnensystems und ermöglichen vielleicht eine Voraussage zum Schicksal des Erdmagnetfeldes in ferner Zukunft.

Das Team um Dr. Richard Harrison hat an BESSY II winzige Partikel in Meteoriten identifiziert, die sich während der frühen Phase des Sonnensystems magnetisch ausgerichtet haben.

Bislang ging die Forschung davon aus, dass Meteoriten keine magnetischen Spuren aus der Frühzeit des Sonnensystems mehr aufweisen, da ihre magnetischen Domänen sich leicht neu ausrichten und daher im Laufe ihrer Geschichte mehrfach überschrieben worden sein dürften. Die magnetische Orientierung der von Harrison entdeckten Nanopartikel ist dagegen extrem stabil. Harrison und sein Team konnten diese „winzigen Weltraummagnete“ mit Hilfe von zirkular polarisiertem Röntgenlicht an BESSY II kartieren. Ihre Ergebnisse sind nun in Nature veröffentlicht.

Bevor sie auf die Erde fallen, haben Meteoriten eine lange, bewegte Geschichte hinter sich: Sie sind Bruchstücke von Asteroiden, die vor rund viereinhalb Milliarden Jahren mit dem Sonnensystem entstanden sind. Viele dieser Himmelskörper heizten sich damals durch radioaktiven Zerfall auf. Dadurch entstanden in ihrem Inneren metallische Schmelzen, die durch Konvektion magnetische Felder erzeugten - so wie es heute noch die Erde tut. Im Laufe der Millionen von Jahren, die seitdem vergangen sind, kühlten die Schmelzen in den kleinen Himmelskörpern jedoch ab, so dass die Konvektion zum Erliegen kam.

Die Chance, solche Himmelskörper wissenschaftlich zu untersuchen, ergibt sich, weil Asteroiden immer mal wieder zusammenstoßen und zerbrechen. Bruchstücke fallen dann als Meteoriten auf die Erde. „Meteoriten sind wie natürliche Festplatten, sie haben das magnetische Feld aus der Frühzeit des Asteroiden gespeichert“, sagt Dr. Richard Harrison. Der Geologe der Universität Cambridge arbeitet an Methoden, um diese tief im Gestein verborgenen Informationen zu entschlüsseln. Nun kann er erste Ergebnisse vorstellen.

Bis dahin war es unklar, ob eisenhaltige Meteoriten überhaupt noch magnetische Informationen aus der frühen Phase des Sonnensystems enthalten. Zwar fand man große magnetische Domänen, diese ließen sich aber leicht durch neue Magnetfelder überschreiben. Die Wahrscheinlichkeit dafür, dass diese Regionen noch nützliche Informationen über die frühen Magnetfelder des Sonnensystems enthalten, galt daher als extrem gering.

Harrison schaute jedoch genauer hin: An der PEEM-Beamline von BESSY II am Helmholtz-Zentrum Berlin fanden er und sein Doktorand James Bryson bemerkenswerte Variationen in den magnetischen Eigenschaften. Sie beobachteten einerseits Regionen mit größeren magnetischen Domänen, die beweglich waren. Außerdem identifizierten sie eine ungewöhnliche Region, die so genannte Wolkenzone. Sie bestand aus tausenden winziger Nanopartikeln aus Tetratenat, einem superharten magnetischen Material.

“Diese Partikel mit Durchmessern von 50 bis 100 Nanometern besitzen eine magnetische Orientierung, die sich überhaupt nicht verändert. Die Magnetisierung erscheint auf den ersten Blick chaotisch, aber genau hier können wir Informationen über die früher vorherrschenden Magnetfelder finden“, erklärt Bryson.

Die PEEM-Beamline bietet Röntgenlicht mit exakt definierter Energie, welches zudem zirkular polarisiert ist. Das bedeutet, die Lichtwellen schwingen in einer bestimmten Ebene, die einer Schraubenform in einem Kreiszylinder entspricht. Diese spezielle Experimentanordnung ermöglicht es, die sehr schwachen magnetischen Signale präzise zu messen und mit hoher Auflösung zu kartieren – und zwar ohne sie durch die Messung zu verändern.

“Die neue Technik, die wir entwickelt haben, bietet einen Weg, um aus diesen Bildern echte Informationen zu gewinnen. Nun können wir erstmals paläomagnetische Messungen von sehr kleinen Regionen dieser Himmelsgesteine durchführen und zwar mit der besten Auflösung, die jemals erreicht wurde“, sagt Harrison.

Dem Team um Harrison gelang es, aus der räumlichen Variation der magnetischen Signale in der Wolkenzone die Geschichte der magnetischen Aktivität des „Muttergesteins“ – also des Asteroiden, von dem der Meteorit einst stammte – zu rekonstruieren. Sie konnten sogar bestimmen, wann sich die metallische Schmelze im Inneren des Asteroiden verfestigte und die Konvektion stoppte.

Die neuen Messungen könnten viele offene Fragen beantworten, die sich zur Lebensdauer und Stabilität von magnetischen Feldern in Himmelskörpern stellen. Die Daten, die das Team mit Hilfe von Computersimulationen interpretiert, weisen darauf hin, dass das Magnetfeld eher durch Überlagerung von Konvektionsströmen als durch rein thermische Strömungen erzeugt wurde. Solche Ergebnisse ermöglichen vielleicht auch eine Vorschau auf das Schicksal des Erdmagnetfelds in ferner Zukunft, wenn die Konvektion im Inneren der Erde zum Erliegen kommt.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung