Interstellarer Staub gibt Aufschluss zur Entstehung chemischer Elemente

Neues aus der Forschung

Meldung vom 21.01.2015

Isotopenforschung der Universität Wien liefert wichtigen Beitrag für internationale Forschungskooperation


150121-1443_medium.jpg
 
Die Fotocollage illustriert, wie kosmischer Staub aus Supernova-Explosionen auf die Erde gelangt ist. Der Krebsnebel ist ein Supernova-Überrest aus dem Jahr 1054 A.D. in 6300 Lichtjahren Entfernung.
Bild: © J. Hester and A. Loll, Arizona State University
A. Wallner, T. Faestermann, J. Feige, C. Feldstein, K. Knie, G. Korschinek, W. Kutschera, A. Ofan, M. Paul, F. Quinto, G. Rugel, P. Steier. 2014. Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nature Communications.
DOI: 10.1038/ncomms6956

Kosmischer Staub am Grund des Pazifischen Ozeans hat zu überraschenden Erkenntnissen über Supernovae geführt. Ein Team von ForscherInnen der Universität Wien, der ANU (Australian National University) in Canberra, der TU München und der Hebrew University Israel hat nun mit Hilfe der Beschleunigeranlage VERA (Vienna Environmental Research Accelerator) der Universität Wien einen wichtigen Baustein für das Verständnis der Elemententstehung geliefert. Die Ergebnisse sind soeben im renommierten Fachmagazin "Nature Communications" erschienen.

Am Ende der Lebenszeit eines großen Sterns steht die Supernova. Bei diesem Prozess zerstört sich der Stern selbst und leuchtet dabei kurzzeitig so hell wie eine ganze Galaxie, erzeugt aber auch die schwereren chemischen Elemente wie Silber, Zinn, oder Iod. "Winzige Überbleibsel von diesen entfernten Explosionen werden von der Erde auf ihrem Weg durch die Milchstraße eingefangen", erklärt Anton Wallner, der die Messungen an der Fakultät für Physik der Universität Wien geleitet hat und jetzt als Gruppenleiter an der australischen Nationaluniversität in Canberra forscht. Ein internationales ForscherInnenteam hat nun ebensolchen interstellaren Staub analysiert und dabei einen wichtigen Baustein für das Verständnis der Elemententstehung entdeckt.

Auf der Suche nach schweren Elementen

"Wir haben galaktischen Staub untersucht, der sich während der letzten 25 Millionen Jahre am Meeresboden abgesetzt hat. Überraschend war, dass wir von besonders schweren und seltenen Elementen wie zum Beispiel Plutonium viel weniger fanden, als wir erwartet haben", erklärt Wallner. Diese Ergebnisse widersprechen Theorien, dass diese schweren Elemente am Ende ihres Sternenzyklus in Supernova-Explosionen gebildet und dann im interstellaren Raum verteilt werden. Solche Explosionen sind auf kosmischen Zeitskalen ziemlich häufig. Supernova-Explosionen produzieren beispielsweise auch Blei, Gold und Quecksilber. Diese Elemente sind auf der Erde jedoch reichlich vorhanden und eignen sich daher nicht als Erkennungszeichen für kosmischen Staub.

Isotopenforschung der Universität Wien: Plutonium-244 nachgewiesen

Die ForscherInnen untersuchten Tiefseesedimente, darunter auch eine 10 cm dicke Eisen-Mangan-Kruste aus 5.000 m Tiefe. Diese über 25 Millionen Jahre alten Ablagerungen enthielten neben Spurenelementen aus dem Ozean auch interstellare Partikel. "Mittels Messungen an unserer Beschleunigeranlange Vienna Environmental Research Accelerator – kurz VERA genannt – gelang es, die wenigen Plutoniumatome mit einer Sensitivität nachzuweisen, die etwa ein Salzkorn aus der Wassermenge von 20 Bodenseen herausfiltern könnte", erklärt Peter Steier, Isotopenforscher an der Universität Wien, die sprichwörtliche Suche im Heuhaufen. VERA ist eine der weltweit sensitivsten Anlagen um winzigste Spuren von seltenen Elementen in unserer Umwelt nachzuweisen.

Kosmische Uhr als natürliches Archiv

Die ForscherInnen suchten nach Spuren von Plutonium-244, ein radioaktives Isotop, das nicht natürlich auf der Erde vorkommt. Plutonium-244 zerfällt mit einer Halbwertszeit von 81 Millionen Jahren. Es kann daher als kosmische Uhr über ihren radioaktiven Zerfall betrachtet werden und eignet sich als sensitiver Zeitmarker explosiver Elemententstehung. "Plutonium-244, das zu der Zeit existierte, als sich die Erde und unser Sonnensystem vor über vier Milliarden Jahren bildeten, ist in der langen Zeit seither zerfallen", erläutert Kernphysiker Wallner. Findet man es trotzdem, so muss es aus kosmischen Explosionen jüngerer Zeit stammen, genauer aus den letzten paar hundert Millionen Jahren. Anschließend muss es dann in die Tiefseesedimente eingelagert worden sein, die als "natürliche Archive" dienen.

Seltene kosmische Explosionen als Lösung?

"Es scheint also, dass zumindest während der letzten paar hundert Millionen Jahre die schwersten Elemente in der Tat nicht in 'normalen' Supernovae gebildet wurden", erklärt Wallner. Die Ergebnisse favorisieren nun sehr seltene kosmische Explosionen, möglicherweise die Verschmelzung von zwei Neutronensternen, als Entstehungsort des chemischen Elements. Diese, obwohl hundert- bis tausendmal seltener, können durch ihre gewaltige Detonation ebenfalls alle schweren Elemente im beobachteten Ausmaß produzieren.

Schwere Elemente, wie Plutonium-244, waren bei der Bildung des Sonnensystems vorhanden. Dies konnte durch stabile Xenon-Isotope, die bei der Spontanspaltung von Plutonium-244 entstehen, in Meteoriten nachgewiesen werden. Thorium und Uran gibt es aufgrund ihrer deutlich längeren Halbwertszeit immer noch, daher muss eine derartige, offenbar sehr seltene, Explosion zeitnah zur Entstehung des Sonnensystems stattgefunden haben. Natürliche radioaktive Elemente wie Uran und Thorium erzeugen einen Großteil der Wärme im Erdinneren. Diese ist ein wesentlicher Antrieb für Vulkanismus und die Bewegung der Kontinente.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung