ESO-Teleskope beobachten erstes Licht einer Gravitationswellen-Quelle

Neues aus der Forschung

Meldung vom 16.10.2017

Teleskope der ESO in Chile haben zum ersten Mal im sichtbaren Licht eine Quelle von Gravitationswellen vermessen können. Diese geschichteschreibenden Beobachtungen deuten auf die Verschmelzung zweier Neutronensterne hin — seit langem vorhergesagte Ereignisse, die als Kilonovae bezeichnet werden, im Zuge derer schwere Elemente wie Gold und Platin im Universum verteilt werden. Die Entdeckung, die in mehreren Fachartikeln präsentiert wird, die u.a. in der Fachzeitschrift Nature erscheinen, liefert auch den bisher stärksten Beweis, dass kurzlebige Gammastrahlenausbrüche durch die Verschmelzung von Neutronensternen entstehen.


171119-1756_medium.jpg
 
VIMOS-Bild der Galaxie NGC 4993 mit dem Gegenstück zu einem verschmelzenden Neutronensternpaar im sichtbaren Licht (markiert)
Bild: ESO
authors
title_published
where_published

um ersten Mal überhaupt haben Astronomen sowohl Gravitationswellen als auch Licht (also elektromagnetische Strahlung) von ein und demselben Ereignis beobachten können. Möglich war das nur durch gemeinsame Bemühungen im Rahmen einer weltweiten Kollaboration sowie der schnellen Reaktion von Instituten auf der ganzen Welt, darunter auch Einrichtungen der ESO.

Am 17. August 2017 wies das Laser Interferometer Gravitational-Wave Observatory (LIGO) der NSF in den Vereinigten Staaten zusammen mit dem Virgo-Interferometer in Italien Gravitationswellen auf ihrem Weg durch die Erde nach. Das fünfte jemals beobachtete Ereignis dieser Art trägt seither den Namen GW170817. Etwa zwei Sekunden später gelang zwei Weltraumteleskopen, dem Fermi Gamma-ray Space Telescope der NASA und dem INTErnational Gamma Ray Astrophysics Laboratory (INTEGRAL) der ESA in derselben Himmelsregion die Beobachtung eines kurzen Gammastrahlenausbruchs.

Das LIGO-Virgo-Netzwerk lokalisierte die Quelle zunächst innerhalb einer großen Region des südlichen Himmels, die der Fläche mehrerer hundert Vollmonde entspricht und Millionen von Sternen enthält [1]. Als in Chile die Nacht hereinbrach, schauten viele Teleskope auf genau diesen Bereich des Himmels und suchten nach neuen Quellen. Dazu gehörten das Visible and Infrared Survey Telescope for Astronomy (VISTA) und das VLT Survey Telescope (VST) am Paranal-Observatorium, das italienische Rapid-Eye-Mount-Teleskop (REM) am La Silla-Observatorium der ESO, ein 0,4-Meter-Teleskop des Las Cumbres Observatory (LCO) und die amerikanische Dark Energy Camera (DECam) am Cerro Tololo Inter-American Observatory. Das Swope-1-Meter-Teleskop konnte als erstes einen neuen Lichtpunkt am Himmel vermelden. Dieser Punkt schien sehr nahe an NGC 4993 zu liegen, einer linsenförmigen Galaxie im Sternbild Wasserschlange (lat. Hydra). Fast zur selben Zeit gelang es den Forschern auch, mit VISTA die Quelle bei infraroten Wellenlängen genau zu lokalisieren. Während die Nacht weiter nach Westen wanderte, erfassten auch die Pan-STARRS- und Subaru-Teleskope auf Hawaii das Signal und beobachteten, wie es schnell stärker wurde.

„Es kommt nur selten vor, dass ein Wissenschaftler Zeuge des Beginns einer neuen Ära werden kann“, kommentiert Elena Pian, Astronomin am INAF in Italien, und Erstautorin eines der Nature-Fachartikel. „Dies war eine solche Gelegenheit!“

Die ESO startete eine der größten sogenannten “Target of Opportunity”-Kampagnen, also kurzfristig angesetzte Messungen außer der Reihe des eigentlichen Zeitplans, so dass viele Teleskope der ESO und ESO-Partnern das Objekt in den Wochen nach der Entdeckung beobachten konnten [2]. Das Very Large Telescope (VLT) der ESO, das New Technology Telescope (NTT), das VST, das MPG/ESO-2,2-Meter-Teleskop und das Atacama Large Millimeter/submillimeter Array (ALMA) [3] beobachteten alle dasselbe Ereignis und dessen Nachwirkungen über einen großen Wellenlängenbereich. Etwa 70 Observatorien auf der ganzen Welt schlossen sich den Beobachtungen an, einschließlich des Hubble-Weltraumteleskops von NASA/ESA.

Abschätzungen der Entfernung aus den Daten der Gravitationswelle und anderer Observatorien stimmen darin überein, dass die Quelle genau wie NGC 4993 etwa 130 Millionen Lichtjahre von der Erde entfernt ist. Das würde bedeuten, dass es sich bis jetzt nicht nur um das uns nächstgelegene jemals beobachtete Gravitationswellen-Ereignis handelt, sondern auch um die uns nächste jemals beobachtete Quelle eines Gammastrahlenausbruchs [4].

Gravitationswellen entstehen durch sich bewegende Massen, allerdings können zurzeit nur diejenigen Wellen beobachtet werden, die aufgrund schneller Geschwindigkeitsänderungen sehr massereicher Objekte entstehen. Solch ein Ereignis ist der Verschmelzung zweier Neutronensterne, den extrem dichten, kollabierten Kernen massereicher Sterne, die nach einer Supernova übrigbleiben [5]. Für die Erklärung kurzer Gammastrahlenausbrüche standen solche Verschmelzungen bisher an erster Stelle. Man geht davon aus, dass auf solch ein Ereignis eine Explosion folgt, die 1000 mal heller als eine normale Nova ist — deshalb werden solche Ereignisse als Kilonova bezeichnet.

Die beinahe zeitgleiche Entdeckung von Gravitationswellen und Gammastrahlen aus GW170817 nährt Hoffnungen, dass es sich bei diesem Objekt tatsächlich um solch eine Kilonova handelt, nach der man lange gesucht hat. Beobachtungen mit ESO-Teleskopen haben Kenndaten zum Vorschein gebracht, die mit den theoretischen Vorhersagen erstaunlich gut übereinstimmen. Kilonovae wurden vor mehr als 30 Jahren zum ersten Mal vorhergesagt und konnten nun erstmals durch Beobachtungen bestätigt werden.

„Die Daten, die wir bisher haben, kommen der Theorie erstaunlich nahe. Es ist nicht nur ein Triumph für die Theoretiker und eine Bestätigung, dass die Ereignisse, die wir mit LIGO und Virgo gemessen haben, tatsächlich real sind, sondern auch ein Erfolg für die ESO, dass sie einen solch erstaunlichen Datensatz einer Kilonova sammeln konnte“, fügt Stefano Covino hinzu, Erstautor eines Fachartikels in Nature Astronomy.

„Die große Stärke der ESO liegt darin, dass sie eine große Auswahl an Teleskopen und Instrumenten besitzt, um große und komplexe astronomische Projekte kurzfristig angehen zu können. Wir befinden uns jetzt in einer neuen Ära der Multi-Messenger-Astronomie!“ schlussfolgert Andrew Levan, Erstautor eines weiteren Fachartikels.

Endnoten

[1] Durch die Entdeckung mit LIGO und Virgo konnte der Ursprung der Gravitationswellen auf einen Bereich im Himmel begrenzt werden, der etwa 35 Quadratgrad entspricht.

[2] Die Galaxie war im August nur abends beobachtbar und stand im September am Himmel bereits zu nah an der Sonne, um weiter beobachtet zu werden.

[3] Am VLT fanden Beobachtungen mit dem X-shooter Spektrografen am Hauptteleskop 2 (UT2), dem FOcal Reducer and low dispersion Spectrograph 2 (FORS2) und dem Nasmyth Adaptive Optics System (NAOS) – Near-Infrared Imager and Spectrograph (CONICA) (NACO) am Hauptteleskop 1 (UT1), dem VIsible Multi-Object Spectrograph (VIMOS) und dem VLT Imager and Spectrometer for mid-Infrared (VISIR), installiert am Hauptteleskop 3 (UT3) und dem Multi Unit Spectroscopic Explorer (MUSE) und dem High Acuity Wide-field K-band Imager (HAWK-I) am Hauptteleskop 4 (UT4) statt. Am VST wurde mit der OmegaCAM beobachtet und bei VISTA mit der VISTA InfraRed CAMera (VIRCAM). Im Rahmen des ePESSTO-Programms nahm das NTT mit dem ESO Faint Object Spectrograph and Camera 2-Spektrografen (EFOSC2) und mit dem Son of ISAAC-Spektrografen (SOFI) Spektren im sichtbaren bzw. infraroten Licht auf. Das MPG/ESO-2,2-Meter-Teleskop beobachtete mit dem Gamma-Ray burst Optical/Near-infrared Detector-Instrument (GROND).

[4] Erst die vergleichsweise geringe Distanz von 130 Millionen Lichtjahren zwischen Erde und den verschmelzenden Neutronensternen machte die Beobachtungen möglich, da Neutronensternen bei einer Verschmelzung schwächere Gravitationswellen erzeugen als sich verschmelzende Schwarze Löcher, die vermutlich für die ersten vier Gravitationswellennachweise verantwortlich waren.

[5] Wenn Neutronensterne sich gegenseitig in einem Doppelsternsystem umkreisen, verlieren sie Energie, in dem sie Gravitationswellen aussenden. Sie kommen sich immer näher, bis sie sich letztlich treffen und durch einen gewaltigen Ausbruch von Gravitationswellen ein Teil der Masse des stellaren Überbleibsels entspr


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung