Durchbruch bei der Fahndung nach Teilchenbeschleunigern im Weltall

Neues aus der Forschung

Meldung vom 12.07.2018

Mit einer international angelegten astronomischen Ringfahndung haben Forscher erstmals eine Quelle hochenergetischer kosmischer Neutrinos geortet, geisterhafter Elementarteilchen, die Milliarden Lichtjahre durch das Weltall reisen und dabei mühelos Sterne, Planeten und ganze Galaxien durchqueren. Die gemeinsame Beobachtungskampagne wurde durch ein einzelnes Neutrino ausgelöst, welches das Neutrinoteleskop IceCube am Südpol am 22. September 2017 aufgezeichnet hatte. Die Wissenschaftlerinnen und Wissenschaftler der insgesamt 18 beteiligten Observatorien stellen ihre Beobachtungen im Fachblatt „Science“ vor.


180715-2301_medium.jpg
 
Künstlerische Darstellung des aktiven Galaxienkerns. Das supermassive Schwarze Loch im Zentrum der Akkretionsscheibe schickt einen energiereichen, scharf gebündelten Teilchenstrahl senkrecht ins All.
1. IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S, INTEGRAL, Kapteyn, Kanata, Kiso, Liverpool, Subaru, Swift, VERITAS, VLA
2. IceCube Collaboration
1. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A
2. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

Science
DOI: 10.1126/science.aat1378


Die Teleskope auf der Erde und im Weltraum konnten den Ursprung des exotischen Elementarteilchens in einer fast vier Milliarden Lichtjahre entfernten Galaxie im Sternbild Orion ermitteln, in der ein gigantisches Schwarzes Loch als natürlicher Teilchenbeschleuniger fungiert. Eine zweite, ebenfalls in „Science“ veröffentlichte Analyse zeigt zudem, dass bereits früher von IceCube aufgezeichnete Neutrinos ebenfalls aus dieser Quelle stammen.

Die Beobachtungskampagne, an der Forscher aus Deutschland zentral beteiligt waren, ist ein entscheidender Schritt zur Lösung des mehr als 100 Jahre alten Rätsels der genauen Herkunft energiereicher, subatomarer Teilchen aus dem Weltall, die als „kosmische Strahlung“ fortwährend in die Erdatmosphäre hageln. „Das ist ein Meilenstein für das junge Feld der Neutrino-Astronomie. Wir öffnen ein neues Fenster in das Hochenergie-Universum“, sagt Marek Kowalski, Leiter der Neutrino-Astronomie bei DESY, einem Forschungszentrum der Helmholtz-Gemeinschaft, und Forscher an der Humboldt-Universität zu Berlin. „Die konzertierte Beobachtungsaktion mit Instrumenten rund um den Globus ist auch ein wichtiger Erfolg der Multi-Messenger-Astronomie, also der Untersuchung des Kosmos mit Hilfe verschiedener Boten wie elektromagnetischer Strahlung, Gravitationswellen und Neutrinos.“

Boten aus dem Hochenergie-Universum

Die energiereichen Neutrinos entstehen nach Erwartung der Wissenschaftler unter anderem als eine Art Nebenprodukt in kosmischen Teilchenbeschleunigern wie etwa dem Materiestrudel gigantischer Schwarzer Löcher oder explodierenden Sternen gemeinsam mit den elektrisch geladenen Atomkernen der kosmischen Teilchenstrahlung. Anders als diese Atomkerne werden die elektrisch neutralen Neutrinos auf ihrem Weg durchs Weltall jedoch nicht von kosmischen Magnetfeldern abgelenkt, so dass ihre Ankunftsrichtung direkt zu ihrer Quelle weist. „Die Beobachtung kosmischer Neutrinos erlaubt Einblicke in solche Vorgänge, die für elektromagnetische Strahlung undurchsichtig sind“, ergänzt Klaus Helbing von der Bergischen Universität Wuppertal, Sprecher des deutschen IceCube-Verbunds. „Kosmische Neutrinos sind Boten aus dem Hochenergie-Universum.“

Der Nachweis von Neutrinos ist allerdings extrem aufwendig, denn die geisterhaften Elementarteilchen durchqueren mühelos selbst die komplette Erde, ohne eine Spur zu hinterlassen. Nur ganz selten reagiert ein Neutrino mit seiner Umgebung. Es erfordert gewaltige Detektoren, um wenigstens ein paar der seltenen Reaktionen zu erwischen. Für den IceCube-Detektor hat ein internationales Forscher-Konsortium unter Führung der Universität von Wisconsin in Madison (USA) darum 86 Löcher ins Eis der Antarktis gebohrt, jedes 2500 Meter tief. In diese Löcher wurden, verteilt über einen vollen Kubikkilometer, 5160 Lichtsensoren installiert. Diese registrieren die winzigen Lichtblitze, die bei den seltenen Neutrino-Reaktionen im durchsichtigen Eis entstehen.

Vor fünf Jahren hat IceCube zum ersten Mal hochenergetische Neutrinos aus den Tiefen des Weltalls nachgewiesen. Die Ankunftsrichtungen dieser Neutrinos schienen aber zufällig über den Himmel verteilt zu sein. „Wir wussten bis heute nicht, woher sie stammen“, sagt Elisa Resconi von der Technischen Universität München, deren Gruppe wesentlich zu den Ergebnissen beigetragen hat. „Mit dem Neutrino vom 22. September ist es uns jetzt gelungen, eine erste Quelle zu identifizieren.“

Von Radiowellen bis Gammastrahlung

Dieses Neutrino hatte eine Energie von etwa 300 Tera-Elektronenvolt, das ist mehr als 40 Mal so viel wie die Protonen im größten Teilchenbeschleuniger der Erde erreichen, dem Large Hadron Collider am europäischen Beschleunigerzentrum CERN bei Genf. Wenige Minuten nachdem das Neutrino aufgezeichnet worden war, schickte der IceCube-Detektor eine automatische Benachrichtigung an zahlreiche andere astronomische Observatorien. Eine große Zahl davon untersuchte daraufhin die Herkunftsregion des energiereichen Teilchens, quer durch das elektromagnetische Spektrum: von der energiereichen Gamma- und Röntgenstrahlung über das sichtbare Licht bis hin zu den Radiowellen. Tatsächlich ließ sich auf diese Weise erstmals der Herkunftsrichtung eines hochenergetischen kosmischen Neutrinos ein Himmelsobjekt zuordnen.

„In unserem Fall haben wir eine aktive Galaxie gesehen, das ist eine große Galaxie mit einem riesigen Schwarzen Loch im Zentrum“, erklärt Kowalski. Senkrecht zu dem gigantischen Strudel, mit dem Materie ins Schwarze Loch gesaugt wird, schießen gewaltige „Jets“ ins All hinaus. Astrophysiker haben schon länger vermutet, dass in diesen Jets ein erheblicher Teil der kosmischen Teilchenstrahlung erzeugt wird. „Für diese Annahme haben wir jetzt einen entscheidenden Beleg geliefert“, unterstreicht Resconi.

Bei der jetzt identifizierten aktiven Galaxie handelt es sich um einen sogenannten Blazar, eine aktive Galaxie, deren Jet genau auf uns zeigt. Bei diesem Blazar mit der Katalognummer TXS 0506+056 hatte der Gammastrahlen-Satellit „Fermi“ der US-Raumfahrtbehörde NASA durch eine von DESY-Forschern entwickelte Software einen drastischen Anstieg der Aktivität um den 22. September herum registriert. Auch ein irdisches Gammastrahlen-Observatorium wurde nun fündig. „Bei der Nachbeobachtung des Neutrinos mit dem Teleskopsystem MAGIC auf der Kanareninsel La Palma konnten wir den Blazar erstmals auch im Bereich der sehr energiereichen Gammastrahlung nachweisen“, sagt die Koordinatorin der MAGIC-Beobachtungen, Elisa Bernardini von DESY. „Die Gammastrahlen kommen der Neutrino-Energie am nächsten und tragen damit besonders zu der Entschlüsselung der Produktionsmechanismen der Neutrinos bei.“ Das Programm zur effizienten Nachbeobachtung von Neutrinos mit Gammastrahlen-Teleskopen wurde von Bernardinis Gruppe entwickelt.

Archivsuche enthüllt weitere Neutrinos

Um zu untersuchen, ob das Zusammentreffen des Neutrinos mit den Gamma-Beobachtungen nur ein Zufall gewesen sein könnte, arbeitete unter Hochdruck ein weltweites Team von Wissenschaftlern aus allen beteiligten Gruppen an einer komplizierten statistischen Analyse. „Die Wahrscheinlichkeit, dass es sich lediglich um eine zufällige Koinzidenz handelt, haben wir auf ungefähr 1 zu 1000 bestimmt“, erklärt die Leiterin der statistischen Analyse der unterschiedlichen Datensätze, Anna Franckowiak von DESY. Das klingt wenig, ist aber noch nicht wenig genug, um der berufsmäßigen Skepsis von Physikern zu begegnen.

Das änderte eine zweite Analyse: Die IceCube-Forscher durchsuchten ihre Daten der vergangenen Jahre auf mögliche frühere Messungen von Neutrinos aus der Richtung des jetzt identifizierten Blazars. Tatsächlich fanden sie für September 2014 bis März 2015 einen merklichen zeitweiligen Neutrino-Überschuss von mehr als einem Dutzend dieser Geisterteilchen aus der Richtung von TXS 0506+056, wie sie in einem weiteren Artikel in derselben Ausgabe von „Science“ berichten. Die Wahrscheinlichkeit, dass dieser Überschuss lediglich ein statistischer Ausreißer ist, wird auf nur 1 zu 5 000 geschätzt. „Eine Zahl, bei der man hellhörig wird“, sagt Christoper Wiebusch von der RWTH Aachen, dessen Gruppe schon in einer früheren Analyse die Andeutung eines Neutrino-Überschusses aus der Richtung von TXS 0506+056 festgestellt hatte. „Die Daten erlauben uns zudem eine erste Abschätzung des Neutrino-Flusses von dieser Quelle.“ Zusammen mit dem Einzelereignis vom September 2017 liefern die IceCube-Daten nun den bislang besten experimentellen Beleg dafür, dass aktive Galaxien Quellen energiereicher kosmischer Neutrinos sind.

„Wir verstehen jetzt besser, wonach wir suchen müssen. Für die Zukunft heißt das, dass wir solche Quellen gezielter aufspüren können“, sagt Elisa Resconi. Und Marek Kowalski fügt hinzu: „Da Neutrinos eine Art Nebenprodukt von geladenen Teilchen der kosmischen Strahlung sind, impliziert unsere Beobachtung, dass aktive Galaxien auch die Beschleuniger dieser Teilchen sind. Mehr als ein Jahrhundert nach der Entdeckung der kosmischen Strahlung durch Victor Hess im Jahr 1912 hat IceCube damit erstmals eine konkrete extragalaktische Quelle der energiereichen Teilchen geortet.“


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung