Die Kraft des Vakuums

Neues aus der Forschung

Meldung vom 03.12.2018

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am Center for Free-Electron Laser Science in Hamburg haben mit theoretischen Berechnungen und Computersimulationen gezeigt, dass in atomar dünnen Schichten eines Supraleiters durch virtuelle Photonen die Kraft zwischen Elektronen und Gitterverzerrungen kontrollieren lässt. Dies könnte die Entwicklung neuer Supraleiter für energiesparende Geräte und viele andere technische Anwendungen ermöglichen.


181211-1856_medium.jpg
 
Die Vakuum-Fluktuationen des Lichts (gelbe Welle) werden in einem optischen Hohlraum (reflektierende Spiegel oben und unten) verstärkt.
M. A. Sentef, M. Ruggenthaler and A. Rubio
Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity
Science Advances, 30 Nov 2018: Vol. 4, no. 11, eaau6969
DOI: 10.1126/sciadv.aau6969


Das Vakuum ist nicht leer. Was für Laien wie Zauberei klingt, beschäftigt Physiker seit der Entwicklung der Quantenmechanik. Das scheinbare Nichts brodelt unablässig und erzeugt selbst am absoluten Temperatur-Nullpunkt andauernd Lichtfluktuationen. Diese virtuellen Photonen warten gewissermaßen darauf, gebraucht zu werden. Sie können Kräfte vermitteln und Eigenschaften von Materie verändern.

Die Vakuum-Kraft ist beispielsweise dafür bekannt, den Casimir-Effekt zu erzeugen. Bringt man zwei parallele metallische Platten eines Kondensators sehr nah zusammen, dann kann man eine mikroskopisch kleine Anziehungskraft zwischen ihnen messen, selbst wenn die Platten nicht elektrisch aufgeladen sind. Diese Kraft entsteht, indem die beiden Platten virtuelle Photonen austauschen. Das kann man sich vorstellen wie zwei Eisläufer, die sich einen Ball hin und her werfen und durch den Rückstoß voneinander abgestoßen werden. Wenn man den Ball nicht sehen würde, könnte man denken, dass eine abstoßende Kraft zwischen den Eisläufern wirkt.

Das MPSD-Team um Michael Sentef, Michael Ruggenthaler und Angel Rubio hat nun eine Arbeit in Science Advances veröffentlicht, die die Vakuum-Kraft mit modernsten Materialien in Verbindung bringt. Speziell beschäftigten sie sich mit der Frage, was passiert, wenn man den zweidimensionalen Hochtemperatur-Supraleiter Eisenselenid (FeSe) auf einem Substrat von SrTiO3 zwischen zwei parallele metallische Platten bringt, zwischen denen die virtuellen Photonen hin- und herfliegen. Das Resultat der Überlegungen und Simulationen: Man kann die Kraft des Vakuums nutzen, um die schnellen Elektronen in der 2D-Ebene stärker an die senkrecht dazu schwingenden Gittervibrationen des Substrats zu koppeln. Die Kopplung zwischen supraleitenden Elektronen und den Schwingungen des Kristallgitters (Phononen) ist ein zentraler Baustein der besonderen Eigenschaften vieler Materialien.

„Wir sind erst am Anfang unserer Verständnisses dieser Prozesse“, sagt Michael Sentef. „Beispielsweise wissen wir gar nicht so genau, wie stark der Einfluss des Vakuum-Lichts auf die Schwingungen an der Oberfläche in der Realität wäre. Wir reden hier von Quasiteilchen aus Licht und Phononen, den Phonon-Polaritonen.“ In 3D-Isolatoren wurden Phonon-Polaritonen mit Lasern schon vor Jahrzehnten gemessen. Für die komplexen neuen 2D-Quantenmaterialien ist dies jedoch alles Neuland. „Wir hoffen natürlich, dass wir durch unsere Arbeit die experimentellen Kollegen dazu anregen, unsere Vorhersagen zu überprüfen“, ergänzt Sentef.

MPSD-Theorie-Direktor Angel Rubio ist begeistert von den neuen Möglichkeiten: „Die Theorien und numerischen Simulationen in unserer Abteilung sind ein grundlegender Baustein für eine ganz neue Generation an technischen Entwicklungen. Noch viel wichtiger ist, dass Forscher dadurch ganz neu über alte Probleme der Wechselwirkung zwischen Licht und Struktur der Materie nachdenken.“ Rubio ist sehr optimistisch, was die Grundlagenforschung in diesem Bereich angeht. „Zusammen mit den experimentellen Fortschritten, etwa der kontrollierten Herstellung und präzisen Messung atomarer Strukturen und deren elektronischer Eigenschaften, können wir auf große Entdeckungen hoffen.“

Seiner Meinung nach stünden die Forscher erst am Anfang eines neuen Zeitalters im atomaren Design von Funktionalitäten in chemischen Verbindungen, besonders in 2D-Materialien und komplexen Molekülen. Und Rubio ist überzeugt: „Die Kraft des Vakuums hilft uns dabei.“


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung