Von der Natur lernen

Neues aus der Forschung

Meldung vom 30.11.2018

Designregeln für belastbare Stromnetze und biologische Sensornetze.


181130-1821_medium.jpg
 
Offshore Windpark in der Nordsee. Die turbulenten Schwankungen des Winds stellen eine Herausforderung für die Stabilität des elektrischen Netzes dar.
Henrik Ronellenfitsch, Jörn Dunkel, and Michael Wilczek
Optimal Noise-Canceling Networks
Phys. Rev. Lett. 121 (2018) 208301
DOI: https://doi.org/10.1103/PhysRevLett.121.208301


Variable Inputs sind in technologischen und biologischen Netzwerken allgegenwärtig: Windkraftanlagen erzeugen aus turbulentem Wind Strom, was zu erheblichen Schwankungen im Stromnetz führen kann. Vergleichbar müssen auch biologische Sensornetzwerke mit Rauschen umgehen: Im menschlichen Hörsystem ist beispielsweise eine unzureichende Unterdrückung von internen Schwankungen als mögliche Ursache für Tinnitus identifiziert worden.

Gemeinsam mit Henrik Ronellenfitsch und Jörn Dunkel vom Massachusetts Institute of Technology (MIT) hat Michael Wilczek vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS) in Göttingen nun erforscht, wie man ein optimales Netzwerk entwerfen kann, das äußere Schwankungen optimal unterdrückt. Ziel dabei war es, die Schwankungen möglichst kostengünstig und passiv, d.h. nur durch Anpassung des Schaltplans, zu verringern. Begonnen haben die Forscher dafür mit einem engmaschigen Netzwerk, in dem nach und nach Verbindungen gestärkt, abgeschwächt, oder sogar ganz entfernt wurden.

Auf diesem Weg zum optimalen Netzwerk fand das Team, dass die effektivste Netzwerkstruktur aus hierarchischen, starken Verbindungen besteht, die langreichweitiger sind als die Fluktuationen. Das optimale Netzwerk überbrückt also gewissermaßen Regionen, in denen die Schwankungen zu ähnlich sind, wodurch sie diese besser ausmitteln lassen.

„Unsere anfängliche Motivation für diese Forschungen stammt aus dem Bereich der erneuerbaren Energien, allerdings haben unsere Recherchen schnell ergeben, dass Fluktuationen in vielen verschiedenartigen Netzwerken ein großes Problem darstellen.“, so Michael Wilczek.

„Interessanterweise haben unsere optimalen Netzwerke eine starke Ähnlichkeit mit biologischen Venennetzen wie sie in Pflanzenblättern, Schleimpilzen und menschlichen Gefäßen vorkommen. Das deutet darauf hin, dass biologische Gestaltungsprinzipien auf technische Anwendungen übertragen werden könnten. Für technische Anwendungen können wir durchaus von der Natur lernen.“, so Henrik Ronellenfitsch, Hauptautor der Studie.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 07.12.2018

Tausend Mal schneller als Flash-Speicher: Schnelles Speichermaterial im Neutronenlicht

Neuartige Phasenwechselmaterialien könnten tausend Mal schneller und dabei erheblich langlebiger sein als bis ...

Meldung vom 07.12.2018

Meilenstein für bERLinPro: Photokathode mit hoher Quanteneffizienz

Ein Team am HZB hat den Herstellungsprozess von Photokathoden optimiert und kann nun Photokathoden mit hoher Q ...

Meldung vom 06.12.2018

Universität Göttingen erforscht in internationalem Team Helium-Schweif eines Exoplaneten

Ein internationales Forscherteam unter Beteiligung des Instituts für Astrophysik der Universität Göttingen ...

Meldung vom 06.12.2018

Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichti ...

Meldung vom 05.12.2018

Lichtblitze aus dem Plasmaspiegel

Physiker des Max-Planck-Instituts für Quantenoptik, der Ludwig-Maximilians- Universität München und der Um ...

Meldung vom 05.12.2018

Zweite Chance für Galileo-Satelliten

Aufgrund einer Fehlfunktion der Soyuz-Oberstufe erreichten zwei Galileo-Satelliten im August 2014 nicht ihre v ...

Meldung vom 03.12.2018

Die Kraft des Vakuums

Wissenschaftler der Theorie-Abteilung des Max-Planck-Instituts für Struktur und Dynamik der Materie (MPSD) am ...


30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!


Newsletter

Neues aus der Forschung