Das Atom ohne Eigenschaften

Neues aus der Forschung

Meldung vom 01.05.2016

Die Welt der kleinsten Teilchen folgt den Regeln der Quantenmechanik. Sie lassen es zu, dass die Eigenschaften eines Teilchens völlig unbestimmt und dennoch stark mit denen anderer Teilchen verknüpft sind. Ein Team von theoretischen und experimentellen Physikern der Universität Basel hat diese sogenannten Bell-Korrelationen erstmals zwischen mehreren Hundert Atomen beobachtet. Das berichten die Forscher in der Fachzeitschrift «Science».


160501-1951_medium.jpg
 
Mithilfe eines Mikrochips wird eine Wolke von ultrakalten Atomen gefangen und ihre magnetischen Momente miteinander verschränkt.
Illustration: Universität Basel, Departement Physik
Roman Schmied, Jean-Daniel Bancal, Baptiste Allard, Matteo Fadel, Valerio Scarani, Philipp Treutlein, Nicolas Sangouard. 2016. Bell Correlations in a Bose-Einstein Condensate. Science (2016)
DOI: 10.1126/science.aad8665

Gewöhnliche Gegenstände besitzen ihre Eigenschaften unabhängig voneinander und unabhängig davon, ob wir sie beobachten oder nicht. Einsteins berühmte Frage, ob der Mond auch da sei, wenn niemand hinschaue, beantworten wir mit einem sicheren Ja. In der Welt der kleinsten Teilchen gelten diese scheinbaren Gewissheiten nicht. Der Aufenthaltsort, die Geschwindigkeit oder die Orientierung des magnetischen Moments eines Atoms kann völlig unbestimmt sein und dennoch stark von Messungen an anderen, auch weit entfernten Atomen abhängen.

Experimenteller Test von Bell-Korrelationen

Unter der (falschen) Annahme, dass die Atome ihre Eigenschaften jeweils unabhängig von der Messung und unabhängig voneinander besitzen, lässt sich eine sogenannte Bell-Ungleichung aufstellen. Wird sie durch die Resultate eines Experiments verletzt, folgt daraus, dass die Eigenschaften der Atome voneinander abhängen müssen. Man spricht dann von Bell-Korrelationen zwischen den Atomen. Diese haben auch zur Folge, dass jedes einzelne Atom seine Eigenschaften erst im Moment der Messung erhält – vor der Messung sind diese Eigenschaften nicht nur unbekannt, sondern sie existieren gar nicht.

Forscher um die Professoren Nicolas Sangouard und Philipp Treutlein von der Universität Basel haben zusammen mit Kollegen aus Singapur solche Bell-Korrelationen nun erstmals in relativ grossen Systemen beobachtet, nämlich zwischen 480 Atomen eines Bose-Einstein-Kondensats. Frühere Experimente konnten Bell-Korrelationen mit höchstens 4 Lichtteilchen oder 14 Atomen nachweisen. Ihr Resultat bedeutet, dass die seltsamen Quanteneffekte auch in grossen Systemen eine Rolle spielen können.

Grosse Anzahl miteinander wechselwirkender Teilchen

Um Bell-Korrelationen in einem Vielteilchensystem nachzuweisen, mussten die Forscher zunächst eine neue Methode entwickeln, die ohne eine Messung jedes einzelnen Teilchens auskommt, was jenseits der heutigen Möglichkeiten läge. Dies gelang ihnen mithilfe einer erst seit Kurzem bekannten Bell-Ungleichung. Ihre Methode konnten die Basler Forscher direkt im Labor an kleinen Wolken aus ultrakalten Atomen ausprobieren, die durch Laserlicht auf wenige Milliardstel Grad über dem absoluten Nullpunkt abgekühlt werden. Darin stossen die Atome ständig zusammen, sodass sich ihre magnetischen Momente langsam miteinander verschränken. Wenn diese Verschränkung ein gewisses Mass erreicht hat, lassen sich Bell-Korrelationen nachweisen. Autor Roman Schmied erklärt: «Man würde erwarten, dass zufällige Stösse bloss Unordnung verursachen. Doch dadurch werden die quantenmechanischen Eigenschaften der Atome so stark miteinander verknüpft, dass sie die klassische Statistik verletzen.»

Konkret wird zuerst jedes der Atome in eine quantenmechanische Überlagerung zweier Zustände gebracht. Nachdem die Atome dann durch Stösse miteinander verschränkt wurden, zählen die Forscher, wie viele der Atome nun tatsächlich in jedem der beiden Zustände sind. Diese Aufteilung schwankt von Versuch zu Versuch zufällig. Wenn nun diese Schwankungen unter eine bestimmte Schwelle fallen, scheint es, als ob die Atome miteinander eine «Abmachung» getroffen hätten, wie das Messergebnis auszufallen habe; diese Abmachung beschreibt genau die Bell-Korrelationen.

Wissenschaftliches Neuland

Die vorgestellte Arbeit, die im Rahmen des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NCCR QSIT) gefördert wurde, könnte neue Möglichkeiten in der Quantentechnologie erschliessen, etwa um Zufallszahlen zu erzeugen oder um Daten abhörsicher zu übertragen. Ausserdem öffnen sich neue Perspektiven für die Grundlagenforschung: «Bell-Korrelationen in Vielteilchensystemen sind ein weitgehend unerforschtes Gebiet und es ist noch nicht absehbar, was sich alles daraus entwickeln wird – wir betreten mit unseren Experimenten Neuland», so Prof. Philipp Treutlein.


Diese Newsmeldung wurde erstellt mit Materialien von idw-online


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung