Softsensor

Softsensor

Ein Softsensor (aus den Worten „Software“ und „Sensor“ zusammengesetzt), auch virtueller Sensor oder Sensorfusion genannt, ist kein real existierender Sensor, sondern eine Abhängigkeitssimulation von stellvertretenden Messgrößen zu einer Zielgröße. Somit wird die Zielgröße nicht direkt gemessen, sondern anhand zu ihr korrelierender Messgrößen und eines Modells der Korrelation berechnet.

Die Ermittlung der Abhängigkeit kann dabei auf unterschiedliche Weise stattfinden, beispielsweise mit Hilfe von künstlichen neuronalen Netzen oder multivariater Verfahren.

Einsatz finden Softsensoren v. a. überall dort, wo die Umgebungsbedingungen reale Sensoren verhindern oder deren Einsatz zu teuer wäre.[1]

Definition

Der Softsensor ermittelt mithilfe von Hardware-Sensoren korrelierende Prozessgrößen (x, y) und übermittelt diese als Eingangsgrößen (m) in das hinterlegte Modell, welches in Form eines Auswertealgorithmus die Zielgröße berechnet. Der zu überwachende Prozess wird dabei durch steuerbare (u) und nicht steuerbare (d) Einflussgrößen beeinflusst.[2]
Modellvalidierung mit gemessener Zielgrößenwert[3]

Softsensoren bilden die Abhängigkeit von korrelierenden Messgrößen zu einer Zielgröße ab, um diese berechnen zu können. Das bedeutet, dass die Zielgröße nicht mit realen Messsensoren im klassischen Sinn bestimmt wird, sondern anhand der Zusammenhänge zu anderen Messgrößen bestimmt werden kann. Dabei spiegelt der Softsensor wie bei einer Simulation den Umgebungszustand wider, um für jeden Zustand der Hardware-Messsensoren den dazugehörigen Ist-Wert der Zielgröße zu berechnen. Die Zielgröße muss dabei keineswegs eine physikalische Größe sein, sondern kann auch ein Kennwert, eine Tendenz oder eine abstrakte Größe sein. Ein einfaches Beispiel hierfür sind Widerstandsthermometer. Diese messen nicht direkt die Temperatur, sondern eine temperaturabhängige Änderung des elektrischen Widerstands, die nachfolgend über eine einfache Korrelation in die Temperatur umgerechnet wird. Dies entspricht dem Konzept des Softsensors. Üblicherweise werden jedoch nur Abbildungen mit mehr als zwei beteiligten Eingangsgrößen auf eine Ausgangsgröße als Softsensor bezeichnet.

Erstellen von Softsensoren

Die Funktion eines Softsensors wird durch ein Modell definiert, dieses spiegelt die Zusammenhänge zwischen Ziel- und Messgrößen wider. Somit besteht der hauptsächliche Aufwand in der Generierung des Modells. Dies kann mit Hilfe verschiedener Methoden geschehen.[4]

Sind alle Zusammenhänge bekannt und können anhand einer chemischen bzw. physikalischen Formel ausgedrückt werden, spricht man von rigoroser Modellierung. Vorteil hierbei ist, dass alle Zustände bereits bekannt sind, weswegen man auch von White Box Modellen spricht. Nachteil ist jedoch, dass in den meisten technischen Anwendungen der zu modellierende Prozess nicht vollständig bekannt ist, da sich eine Vielzahl komplexer Einflüsse überlagern, die sich nur näherungsweise oder mit Hilfe von Vereinfachungen und Annahmen beschreiben lassen. Unter den multivariaten Verfahren sind diverse Analyse- und Regressionsverfahren zu verstehen. Hier werden z. B. alle miteinander korrelierende Messgrößen zu Hauptkomponenten zusammengefasst und diese in einem neuen Wertebereich mit reduzierter Dimension übertragen. Somit ist ein Teil des Prozesses, analog der rigorosen Modellierung, bereits bekannt, während der andere bestimmt werden muss, daher auch Grey Box genannt. Nachteil des Verfahrens ist, dass sich viele Prozesse nur mit einer hohen Anzahl an Hauptkomponenten beschreiben lassen und damit kaum eine Vereinfachung stattfindet.

Ein weiterer Ansatz sind die künstlichen neuronalen Netze. Bei diesem Black Box Verfahren sind die mathematischen Zusammenhänge unbekannt. Da es sich um eine rein auf Daten basierende selbstlernende Modellierung handelt, können auch nicht analytisch lösbare Zusammenhänge damit beschrieben werden, sofern diese in der Datenbasis repräsentiert sind. Gefahr bei künstlichen neuronalen Netzen stellt das sogenannte Overfitting dar, dabei lernt das Netz seine Trainingsdatensätze auswendig ohne den eigentlichen Prozess abzubilden.

Vor- und Nachteile

Für die Trainingsphase bei der Modellbildung benötigen die meisten Verfahren eine große Datenbasis der Messgrößen als auch Zielgrößen, was eine aufwändige Datenerfassung im Vorfeld bedingt. Weiterhin ist ein Problem von Softsensoren ihre Individualität. Das bedeutet, dass sie eine geringe Robustheit gegenüber Änderungen der Umgebungsbedingungen aufweisen. Befindet sich eine der Messgrößen auf Grund von Prozessveränderungen außerhalb des Modellbereichs, muss mit einer großen Ungenauigkeit der Modellvorhersage gerechnet werden.

Vorteile bieten Softsensoren vor allem aufgrund ihrer Echtzeit Adaptionsmöglichkeit. Dies bietet u. a. auch die Option, die Prozessüberwachung zu einem geschlossenen Regelkreis weiter zu entwickeln und somit Prozessabweichung frühzeitig zu erkennen und Gegenmaßnahmen rechtzeitig treffen zu können. Ebenfalls können Softsensoren so auch zur Überwachung von Hardwaresensoren genutzt werden. Da jederzeit ein Abgleich vom gemessenen Ist-Wert des Hardwaresensors mit dem berechneten Soll-Wert des Softsensor durchgeführt werden kann. Somit ist es möglich, falsche Messergebnisse aufgrund von Hardwaresensordefekten zu erkennen und so ggf. deren Ausfall übergangsweise zu kompensieren. Weiterhin bieten Softsensoren die Möglichkeit den Einfluss der korrelierenden Messgrößen zu der Zielgröße zu quantifizieren und so deren Abhängigkeiten zu ermitteln, um ein größeres Prozessverständnis zu gewinnen. Es wäre z. B. in einem Prozess möglich, die optimalen Einstellungen der Prozessparameter der korrelierenden Messgrößen für die Zielgröße zu finden.

Anwendungsgebiete

Die Anwendungsfelder von Softsensoren sind sehr vielfältig. Die größte Verbreitung findet sich in der chemischen Industrie. Außerdem werden sie in der Anlagensteuerung von Verbrennungsprozessen von Kraftwerken genutzt.[5] In neueren Forschungsarbeiten wird auch der Einsatz in der Kunststoffverarbeitung vorangetrieben, wo dieser bereits erfolgreich realisiert werden konnte.[6] Im Rahmen der Entwicklung von Softsensoren entstehen präzise Prozessmodelle, die auch den Einsatz von Softsensoren zur Prozessanalyse und -optimierung erlauben. Dies ermöglicht eine Anpassung der Prozessparameter zur Verbesserung der Energie-, Kosteneffizienz und Qualität. Anwendungen finden sich z. B. bereits im Kunststoffsektor.[7]

Einzelnachweise

  1. L. Fortuna, S. Graziani, A. Rizzo, M. G. Xibilia: Soft Sensor for Monitoring and Control of Industrial Processes. Springer-Verlag, London, 2006, ISBN 1-84628-479-1.
  2. SKZ – Das Kunststoffzentrum nach Luttmann u. a.: Soft sensors in bioprocessing: A status report and recommendations. In: Biotechnology Journal. 7, 2012, S. 1040–1048.
  3. SKZ – Das Kunststoff-Zentrum nach Yiagopoulos u. a.: Development of a Softsensor for On-line MFI Monitoring in Reactive Polypropylene Extrusion. In: ECHEMA-Monographs. 138, 305 (2004).
  4. T. Hochrein, I. Alig: Prozessmesstechnik in der Kunststoffaufbereitung. Vogel Business Media, Würzburg 2011, ISBN 978-3-8343-3117-5.
  5. C. Kugler, T. Hochrein, M. Bastian, T. Froese: Verborgene Schätze in Datengräbern. In: QZ. Jahrgang 59, Carl Hanser Verlag, München 2014.
  6. C. Kugler, K. Dietl, T. Hochrein, P. Heidemeyer, M. Bastian: Robust soft sensor based on an artificial neural network for real-time determination of the melt viscosity of polymers. In: PPS-29. Nürnberg 2013.
  7. C. Kugler, T. Froese, T. Hochrein, M. Bastian: Reale Aufgaben für virtuelle Sensoren. In: Kunststoffe. Carl Hanser Verlag, München, Heft 2/2012.

Diese Artikel könnten dir auch gefallen



Die letzten News


13.01.2021
Schnellere und stabilere Quantenkommunikation
Einer internationalen Forschungsgruppe ist es gelungen, hochdimensionale Verschränkungen in Systemen aus zwei Photonen herzustellen und zu überprüfen. Damit lässt sich schneller und sicherer kommunizieren, wie die Wissenschaftlerinnen und Wissenschaftler zeigen.
12.01.2021
Elektrisch schaltbares Qubit ermöglicht Wechsel zwischen schnellem Rechnen und Speichern
Quantencomputer benötigen zum Rechnen Qubits als elementare Bausteine, die Informationen verarbeiten und speichern.
12.01.2021
ALMA beobachtet, wie eine weit entfernte kollidierende Galaxie erlischt
Galaxien vergehen, wenn sie aufhören, Sterne zu bilden.
11.01.2021
Umgekehrte Fluoreszenz
Entdeckung von Fluoreszenzmolekülen, die unter normalem Tageslicht ultraviolettes Licht aussenden.
11.01.2021
Weyl-Punkten auf der Spur
Ein Material, das leitet und isoliert – gibt es das? Ja, Forschende haben erstmals 2005 sogenannte topologische Isolatoren beschrieben, die im Inneren Stromdurchfluss verhindern, dafür aber an der Oberfläche äußerst leitfähig sind.
11.01.2021
MOONRISE: Schritt für Schritt zur Siedlung aus Mondstaub
Als Bausteine sind sie noch nicht nutzbar – aber die mit dem Laser aufgeschmolzenen Bahnen sind ein erster Schritt zu 3D-gedruckten Gebäuden, Landeplätzen und Straßen aus Mondstaub.
11.01.2021
Konstanz von Naturkonstanten in Raum und Zeit untermauert
Moderne Stringtheorien stellen die Konstanz von Naturkonstanten infrage. Vergleiche von hochgenauen Atomuhren bestätigen das jedoch nicht, obwohl die Ergebnisse früherer Experimente bis zu 20-fach verbessert werden konnten.
08.01.2021
Weder flüssig noch fest
E
08.01.2021
Mit quantenlimitierter Genauigkeit die Auflösungsgrenze überwinden
Wissenschaftlern der Universität Paderborn ist es gelungen, eine neue Methode zur Abstandsmessung für Systeme wie GPS zu entwickeln, deren Ergebnisse so präzise wie nie zuvor sind.
25.12.2020
Wie sich Sterne in nahe gelegenen Galaxien bilden
Wie Sterne genau entstehen, ist nach wie vor eines der grossen Rätsel der Astrophysik.
25.12.2020
Kartierung eines kurzlebigen Atoms
Ein internationales Team aus Deutschland, Schweden, Russland und den USA unter der Leitung von Wissenschaftern des European XFEL hat Ergebnisse eines Experiments veröffentlicht, das neue Möglichkeiten zur Untersuchung von Übergangszuständen in Atomen und Molekülen eröffnet.
25.12.2020
Skyrmionen – Grundlage für eine vollkommen neue Computerarchitektur?
Skyrmionen sind magnetische Objekte, von denen sich Forscher weltweit versprechen, mit ihnen die neuen Informationseinheiten für die Datenspeicher und Computerarchitektur der Zukunft gefunden zu haben.
25.12.2020
Mysterien in den Wolken: Große Tröpfchen begünstigen die Bildung kleinerer
Wissenschaftler des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPIDS) berichten die über ihre neuen Erkenntnisse, wie ausfallende große Regentropfen und Eispartikel das Wachstum von Aerosolen begünstigen können, um neue Kondensationskerne oder Eiskeimteilchen in Wolken zu erzeugen.
25.12.2020
Kollidierende Sterne offenbaren grundlegende Eigenschaften von Materie und Raumzeit
Ein internationales Wissenschaftsteam um den Astrophysikprofessor Tim Dietrich von der Universität Potsdam schaffte den Durchbruch bei der Größenbestimmung eines typischen Neutronensterns und der Messung der Ausdehnung des Universums.
25.12.2020
Endgültige Ergebnisse und Abschied vom GERDA-Experiment
Die Zeit des GERDA-Experiments zum Nachweis des neutrinolosen doppelten Betazerfalls geht zu Ende.
18.12.2020
Galaxienhaufen, gefangen im kosmischen Netz
Mehr als die Hälfte der Materie in unserem Universum entzog sich bislang unserem Blick.
18.12.2020
Zwei planetenähnliche Objekte, die wie Sterne geboren wurden
Ein internationales Forschungsteam unter der Leitung der Universität Bern hat ein exotisches System entdeckt, das aus zwei jungen planetenähnlichen Objekten besteht, die sich in sehr grosser Entfernung umkreisen.
16.12.2020
Neuen Quantenstrukturen auf der Spur
Der technologische Fortschritt unserer modernen Informationsgesellschaft basiert auf neuartigen Quantenmaterialien.
16.12.2020
Das Protonenrätsel geht in die nächste Runde
Physiker am Max-Planck-Institut für Quantenoptik haben die Quantenmechanik mit Hilfe der Wasserstoffspektroskopie einem neuen bis dato unerreichten Test unterzogen und sind der Lösung des bekannten Rätsels um den Protonenladungsradius damit ein gutes Stück nähergekommen.
03.12.2020
Laborexperimente könnten Rätsel um Mars-Mond Phobos lösen
Was lässt die Oberfläche des Mars-Monds Phobos verwittern? Ergebnisse der TU Wien liefern wichtige Erkenntnisse, bald soll eine Weltraummission Gesteinsproben nehmen.
26.11.2020
Gesund bis zum Mars
Tübinger Wissenschaftlerin untersucht mit internationalem Weltraumforschungsteam die Einflüsse der Raumfahrt auf den menschlichen Körper.
26.11.2020
Stammbaum der Milchstraße
Galaxien wie die Milchstraße sind durch das Verschmelzen von kleineren Vorgängergalaxien entstanden.
26.11.2020
Nanodiamanten vollständig integriert kontrollieren
Physikerinnen und Physikern ist es gelungen, Nanodiamanten vollständig in nanophotonischen Schaltkreisen zu integrieren und gleichzeitig mehrere dieser Nanodiamanten optisch zu adressieren. Die Studie schafft Grundlagen für zukünftige Anwendungen im Bereich der Quantensensorik oder Quanteninformationsverarbeitung.
26.11.2020
Der Sonne ein Stück näher
Der Borexino-Kollaboration, an der auch Wissenschaftler der TU Dresden beteiligt sind, ist es nach über 80 Jahren gelungen, den Bethe-Weizsäcker-Zyklus experimentell zu bestätigen.
22.11.2020
Entfernungen von Sternen
1838 gewann Friedrich Wilhelm Bessel das Wettrennen um die Messung der ersten Entfernung zu einem anderen Stern mit Hilfe der trigonometrischen Parallaxe - und legte damit die erste Entfernungsskala des Universums fest.