Bond-Zahl

Bond-Zahl

Physikalische Kennzahl
Name Bond-Zahl,
Eötvös-Zahl
Formelzeichen $ \mathit{Bo}, \mathit{Eo} $
Dimension dimensionslos
Definition $ \mathit{Bo} = \frac{f\, L^2}{\sigma} $
$ f $ Kraftdichte der Volumenkraft
$ L $ charakteristische Länge
$ \sigma $ Oberflächenspannung
Benannt nach Wilfrid Noel Bond,
Loránd Eötvös
Anwendungsbereich Phasengrenzflächen von Fluiden

Die Bond-Zahl (Formelzeichen: $ \mathit{Bo} $, nach dem englischen Physiker Wilfrid Noel Bond (1897–1937)[1][2]) oder Eötvös-Zahl ($ \mathit{Eo} $, nach dem ungarischen Mathematiker und Geophysiker Loránd Eötvös) ist eine dimensionslose Kennzahl der Fluidmechanik. Sie kann physikalisch interpretiert werden als das Verhältnis der Volumenkraft, die auf die Flüssigkeit wirkt, zur Kraft aufgrund von Oberflächenspannung:

$ \mathit{Bo} = \frac{F_\text{Volumen}}{F_\text{Oberfläche}} $

Die Bezeichnung Eötvös-Zahl kann verwendet werden

  • als Synonym zu Bond-Zahl[1]
  • als Spezialfall der Bond-Zahl im Fall von Auftrieb[3] oder
  • als Verallgemeinerung der Bond-Zahl für beliebige charakteristische Parameter $ L $.[4]

Ähnlich wie die Reynolds-Zahl eignet sich die Bond-Zahl zum Vergleich von Systemen, die sich in einzelnen Parametern wie Dichte, Größe oder Oberflächenspannung unterscheiden. Im Gegensatz zur Reynoldszahl, die bei Strömungen Anwendung findet, charakterisiert die Bondzahl jedoch statische Systeme. Ein kleiner Wert bedeutet, dass das System von der Oberflächenspannung bestimmt wird, ein großer Wert dagegen, dass die Oberflächenspannung zur Abschätzung des Verhaltens vernachlässigt werden kann. Zusammen mit der Morton-Zahl beschreibt die Bond-Zahl so beispielsweise die Form eines fluiden Partikels (Luftblase, Wassertropfen etc.) unter dem Einfluss der Gravitation.

Spezialfall: Gravitation als Volumenkraft

Ist die Volumenkraft durch die Gravitation gegeben, so wird die Bond-Zahl folgendermaßen gebildet:

$ \mathit{Bo} = \frac{\text{Gravitationskraft}}{\mathrm{Oberfl\ddot achenkraft}} = \frac{\text{hydrostatischer Druck}}{\text{Kapillardruck}} = \frac{\rho \cdot g \cdot H \cdot R}{2\sigma} $

Dabei beschreibt

  • $ H $ die vertikale Höhe
  • $ R $ den für den Kapillardruck verantwortlichen Radius z. B. eines Tropfens. Beide müssen nicht identisch sein, so dass oft zwei Längenskalen in die Bond-Zahl eingehen (z. B. vertikale Kapillare: Füllhöhe $ H $, Radius $ R $).

Weiterhin ist

Im Fall, dass der Auftrieb nicht vernachlässigt werden kann oder überwiegt, beispielsweise eine Luftblase im Wasser, muss die Volumenkraft aus der Differenz $ \Delta \rho $ der Dichten beider Phasen, hier Wasser und Luft berechnet werden:

$ \mathit{Bo} = \frac{\Delta \rho \cdot g \cdot L^2}{\sigma} $

Beispiel: Ein Tropfen

Form von Regentropfen in Abhängigkeit von ihrer Größe

Bei einem Tropfen Flüssigkeit auf einer ebenen, waagerechten Fläche erlaubt die Bond-Zahl eine Vorhersage über die Form, die er annimmt. In diesem Fall bestimmt sich die Bond-Zahl mit dem charakteristischen Radius $ R $ wie folgt:

$ \mathit{Bo} = \frac{\rho g R^2}{\sigma} $

Der Radius geht in diesem Fall maximal doppelt in die Gewichtskraft ein ($ H = 2 R $), und ist für den Kapillardruck verantwortlich. Im Gegensatz zur Morton-Zahl, welche nur von den Eigenschaften des Fluids abhängt, ändert sich die Bond-Zahl mit dem Radius des Tropfens.

Wenn $ \mathit{Bo} $ sehr viel kleiner als eins ist, spielt die Gravitation keine Rolle, und der Tropfen ist in guter Näherung kugelförmig. Bei größeren Werten von $ \mathit{Bo} $ ist sie ellipsenförmig und bei niedriger Morton-Zahl (meist bei Flüssigkeiten geringer Viskosität, beispielsweise Wasser) eher wackelig. Bei noch größeren Bond-Zahlen nimmt der Tropfen die Form einer runden Kappe an, welche sich bei Regentropfen schließlich in zwei kleinere Tropfen aufteilt.[5]

Einzelnachweise

  1. 1,0 1,1 Josef Kunes: Dimensionless Physical Quantities in Science and Engineering. Elsevier, 2012, ISBN 0-12-391458-2, S. 95 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Willi H. Hager: Wilfrid Noel Bond and the Bond number. In: Journal of Hydraulic Research. Band 50, Nr. 1, S. 3–9, doi:10.1080/00221686.2011.649839.
  3. R. Schmel: Dissertation: Tropfendeformation und Nachzerfall bei der technischen Gemischaufbereitung. In: Forschungsbericht des ITS. Band 23. LOGOS-Verlag, 2004, ISBN 3-8325-0707-8, S. 53 (kit.edu).
  4. Satish Kandlikar, Srinivas Garimella, Dongqing Li, Stephane Colin, Michael R. King: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Butterworth-Heinemann, 2013, ISBN 0-08-098351-0, S. 229 (eingeschränkte Vorschau in der Google-Buchsuche).
  5. C.B. Jenssen et al.: Parallel Computational Fluid Dynamics 2000: Trends and Applications. Gulf Professional Publishing, 2001, ISBN 0-08-053840-1, S. 80 (eingeschränkte Vorschau in der Google-Buchsuche).
en:Bond number

Diese Artikel könnten dir auch gefallen



Die letzten News


25.02.2021
Asteroidenstaub im „Dinosaurier-Killer-Krater“ gefunden
Ein internationales Forscherteam berichtet über die Entdeckung von Meteoriten-Staub in Bohrproben aus dem Chicxulub-Impaktkraters in Mexiko.
25.02.2021
Zwillingsatome: Eine Quelle für verschränkte Teilchen
Quanten-Kunststücke, die man bisher nur mit Photonen durchführen konnte, werden nun auch mit Atomen möglich. An der TU Wien konnte man quantenverschränkte Atomstrahlen herstellen.
23.02.2021
Auch in der Quantenwelt gilt ein Tempolimit
Auch in der Welt der kleinsten Teilchen mit ihren besonderen Regeln können die Dinge nicht unendlich schnell ablaufen.
23.02.2021
Erstes Neutrino von einem zerrissenen Stern
Ein geisterhaftes Elementarteilchen aus einem zerrissenen Stern hat ein internationales Forschungsteam auf die Spur eines gigantischen kosmischen Teilchenbeschleunigers gebracht.
23.02.2021
Unglaubliche Bilder vom Rover Perseverance auf dem Mars
21.02.2021
Schwarzes Loch in der Milchstraße massiver als angenommen
Ein internationales Team renommierter Astrophysikerinnen und -physiker hat neue Erkenntnisse über Cygnus X-1 gewonnen.
21.02.2021
Ultraschnelle Elektronendynamik in Raum und Zeit
In Lehrbüchern werden sie gerne als farbige Wolken dargestellt: Elektronenorbitale geben Auskunft über den Aufenthaltsort von Elektronen in Molekülen, wie eine unscharfe Momentaufnahme.
21.02.2021
Mit schwingenden Molekülen die Welleneigenschaften von Materie überprüfen
Forschende haben mit einem neuartigen, hochpräzisen laser-spektroskopischen Experiment die innere Schwingung des einfachsten Moleküls vermessen. Den Wellencharakter der Bewegung von Atomkernen konnten sie dabei mit bisher unerreichter Genauigkeit überprüfen.
21.02.2021
Quanten-Computing: Wenn Unwissenheit erwünscht ist
Quantentechnologien für Computer eröffnen neue Konzepte zur Wahrung der Privatsphäre von Ein- und Ausgabedaten einer Berechnung.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Hochdruckexperimente liefern Einblick in Eisplaneten
Per Röntgenlicht hat ein internationales Forschungsteam einen Blick ins Innere ferner Eisplaneten gewonnen.
19.02.2021
Röntgen-Doppelblitze treiben Atomkerne an
Erstmals ist einem Forscherteam des Heidelberger Max-Planck-Instituts für Kernphysik die kohärente Kontrolle von Kernanregungen mit geeignet geformten Röntgenlicht gelungen.
19.02.2021
Ein autarkes Überleben auf dem Mars durch Bakterien
Führende Raumfahrtbehörden streben zukünftig astronautische Missionen zum Mars an, die für einen längeren Aufenthalt konzipiert sind.
17.02.2021
Dualer Charakter von Exzitonen im ultraschnellen Regime: atomartig oder festkörperartig?
Exzitonen sind Quasiteilchen, die Energie durch feste Stoffe transportieren können.
17.02.2021
Neuer Spektrograf sucht nach Super-Erden
Das astronomische Forschungsinstrument CRIRES+ soll Planeten außerhalb unseres Sonnensystems untersuchen.
12.02.2021
Eine neue Art Planeten zu bilden
Wissenschaftlerinnen und Wissenschaftler der Universität Zürich schlagen in Zusammenarbeit mit der Universität Cambridge eine neue Erklärung für die Häufigkeit von Exoplaneten mittlerer Masse vor.
10.02.2021
Optischer Schalter für Nanolicht
Forscherinnen und Forscher in Hamburg und den USA haben einen neuartigen Weg für die Programmierung eines Schichtkristalls entwickelt, der bahnbrechende Abbildungsfähigkeiten erzeugt.
10.02.2021
Weltweit erste Videoaufnahme eines Raum-Zeit-Kristalls gelungen
Einem Forschungsteam ist der Versuch gelungen, bei Raumtemperatur einen Mikrometer großen Raum-Zeit-Kristall aus Magnonen entstehen zu lassen. Mithilfe eines Rasterröntgenmikroskops an BESSY II konnten sie die periodische Magnetisierungsstruktur sogar filmen.
07.02.2021
Lang lebe die Supraleitung!
Supraleitung - die Fähigkeit eines Materials, elektrischen Strom verlustfrei zu übertragen - ist ein Quanteneffekt, der trotz jahrelanger Forschung noch immer auf tiefe Temperaturen be-schränkt ist.
05.02.2021
Quantensysteme lernen gemeinsames Rechnen
Quantencomputer besitzen heute einige wenige bis einige Dutzend Speicher- und Recheneinheiten, die sogenannten Qubits.
03.02.2021
SpaceX-Marsrakete explodiert bei Landung
02.02.2021
Wie kommen erdnahe Elektronen auf beinahe Lichtgeschwindigkeit?
Elektronen können in den Van-Allen-Strahlungsgürteln um unseren Planeten ultra-relativistische Energien erreichen und damit nahezu Lichtgeschwindigkeit.
02.02.2021
Entwicklung einer rekordverdächtigen Quelle für Einzelphotonen
Forschende der Universität Basel und der Ruhr-Universität Bochum haben eine Quelle für einzelne Photonen entwickelt, die Milliarden dieser Quantenteilchen pro Sekunde produzieren kann.
02.02.2021
Mit Künstlicher Intelligenz warme dichte Materie verstehen
Die Erforschung warmer dichter Materie liefert Einblicke in das Innere von Riesenplaneten, braunen Zwergen und Neutronensternen.
01.02.2021
Durch die fünfte Dimension zur Dunklen Materie
Eine Entdeckung in der theoretischen Physik könnte helfen, das Rätsel der Dunklen Materie zu lösen.