Woher wissen wir wie alt die Erde ist

Neues aus der Forschung

Meldung vom 30.06.2017

Die Schöpfungsmythen waren die erste Quelle, nach der Theologen das Alter der Erde bestimmten. Erst im 17. Jahrhundert begannen Naturforscher, auf und in der Erde nach Spuren ihres Alters zu suchen. In der aktuellen Ausgabe des Forschungsmagazins „Forschung Frankfurt“ zum Thema "Zeit" lässt der Geologe Sascha Staubach die Geschichte von der Bestimmung des Erdalters Revue passieren.


170630-1204_medium.jpg
Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation
 
Querschnitte von Zirkonen - genauen Uhren für das Alter der Erde.
Foto: Richard Roper, Goethe Universität

Die Heiligen Bücher dienten im Barock als die erste Datenbasis zur Berechnung des Erdalters. So legten der Erzbischof von Armagh, James Ussher, und John Lightfoot die Alter der biblischen Patriarchen und die Regierungszeiten der Könige zugrunde, um die Zeit von der Erschaffung der Welt bis heute zu bestimmen. Der 1650 erschienene Ussher-Lightfoot-Kalender legt den Beginn der Welt auf das Jahr 4004 v. Chr.

Den ersten naturwissenschaftlichen Versuch, das Alter der Erde zu bestimmen, unternahm im 17. Jahrhundert der britische Astronom und Geologe Edmond Halley. Er untersuchte den Salzgehalt der Flüsse und Weltmeere und kam zu dem Schluss, dass die Erde deutlich älter sein müsse, als von Ussher behauptet. Knapp 200 Jahre später, in den 1890er Jahren, berechnete der irische Geologe John Joly das Alter der Erde aufgrund von Halleys Überlegungen und kam auf 80 bis 90 Millionen Jahre.

Aus Gesteinen lesen – die Entwicklung der Stratigraphie

Im 19. Jahrhundert führte Charles Lyell die Methode der Stratigraphie ein. Diese beruht auf der Erkenntnis, dass in einem Stapel von Gesteinsschichten das älteste Material zuunterst liegt und dass Fossilien aus derselben Schicht auch dasselbe Alter haben müssen. Hieraus entwickelte sich die Datierungsmethode mithilfe sogenannter Leitfossilien. Ein typisches Beispiel dafür sind Ammoniten. Sie kamen fast überall auf der Erde vor und veränderten ihr Äußeres im Laufe der Evolution relativ schnell, so dass sich in kurzer Zeit möglichst viele gut unterscheidbare Arten entwickelten. Findet man nun in unterschiedlichen Regionen der Welt Fossilien derselben Art, so sind die Schichten, aus denen sie stammen, vermutlich gleich alt. Auf diese Weise lässt sich allerdings nur das relative Alter der einzelnen Schichten zueinander bestimmen.

Einen großen Schritt in die Richtung absoluter Zeitangaben machten der Physiker Ernest Rutherford und der Chemiker Frederic Soddy. Sie erkannten als Erste, dass man die Zerfälle natürlich vorkommender radioaktiver Elemente zur Altersbestimmung nutzen kann. Einen großen Schritt zur Anwendung dieses Prinzips machten der englische Geologe Arthur Holmes und der amerikanische Physiker Alfred O.C. Nier, als sie im Mineral Zirkon einen Schlüssel zur absoluten Altersbestimmung von Gesteinen fanden.

Während ihres Wachstums lagert diese Verbindung aus Zirkonium, Silizium und Sauerstoff auch geringe Mengen an Uran ein. Dieses sitzt fest im Kristallgitter und zerfällt mit der ihm eigenen Halbwertszeit und über verschiedene Zwischenstufen zu Blei. Die moderne Massenspektrometrie erlaubt es, auch geringste Konzentrationen von Elementen zu messen, so dass man das exakte Verhältnis von Uran zu Blei ermitteln kann. Mithilfe der Halbwertszeit lässt sich der Zeitpunkt berechnen, zu dem das Uran in den Kristall eingebaut wurde.

Wie alt ist die Erde nun?

Das aktuell anerkannte Alter unseres Planeten beträgt 4,55 ± 0,05 Milliarden Jahre. Dieses Alter wurde allerdings an Meteoriten gemessen. Deren Material bildete sich etwa zeitgleich mit der Erde aus der Staubscheibe des noch jungen Sonnensystems, kühlte jedoch schneller ab. Auf der deutlich größeren Erde dauerte es einige Zeit, bis sich auf der glutflüssigen Oberfläche erste Teile einer festen Gesteinskruste bildeten, deren Reste man heute in Form von Zirkonen finden kann. Sie sind die einzigen bis heute erhaltenen Relikte dieser ältesten Kruste. Man findet diese Zirkone, eingebettet in jüngeres Gestein, in den Jack Hills im Westen Australiens. Sie weisen ein Alter von 4,4 Milliarden Jahren auf. Das älteste komplett erhaltene Gestein, auf das man seinen Fuß setzen kann, ist der sogenannte Acasta Gneis im Norden Kanadas mit einem Alter von 4,03 Milliarden Jahren.


Diese Newsmeldung wurde erstellt mit Materialien von idw


News der letzten 2 Wochen


Meldung vom 17.01.2019

Wie Moleküle im Laserfeld wippen

Wenn Moleküle mit dem oszillierenden Feld eines Lasers wechselwirken, wird ein unmittelbarer, zeitabhängiger ...

Meldung vom 16.01.2019

Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedanken ...

Meldung vom 15.01.2019

Kieler Physiker entdecken neuen Effekt bei der Wechselwirkung von Plasmen mit Festkörpern

Plasmen finden sich im Inneren von Sternen, werden aber auch in speziellen Anlagen im Labor künstlich erzeugt ...

Meldung vom 14.01.2019

Vermessung von fünf Weltraum-Blitzen

Ein am PSI entwickelter Detektor namens POLAR hat vom Weltall aus Daten gesammelt. Im September 2016 war das G ...

Meldung vom 14.01.2019

Mit Satelliten den Eisverlust von Gletschern messen

Geographen der FAU untersuchen Gletscher Südamerikas so genau wie nie zuvor.

Meldung vom 14.01.2019

5000 mal schneller als ein Computer

Ein atomarer Gleichrichter für Licht erzeugt einen gerichteten elektrischen Strom. Wenn Licht in einem Halble ...

Meldung vom 14.01.2019

Isolatoren mit leitenden Rändern verstehen

Isolatoren, die an ihren Rändern leitfähig sind, versprechen interessante technische Anwendungen. Doch bishe ...

Meldung vom 10.01.2019

Ionenstrahlzerstäuben - Abscheidung dünner Schichten mit maßgeschneiderten Eigenschaften

Dünne Schichten mit Schichtdicken im Bereich weniger Nanometer spielen eine zentrale Rolle in vielen technolo ...

Meldung vom 10.01.2019

Wie Gletscher gleiten

Der Jülicher Physiker Bo Persson hat eine Theorie zum Gleiten von Gletschereis auf felsigem Boden vorgestellt ...

Meldung vom 08.01.2019

Neue Einblicke in die Sternenkinderstube im Orionnebel

Team unter Kölner Beteiligung zeigt: Winde eines jungen Sternes verhindern die Bildung neuer Sterne in der Na ...

Meldung vom 08.01.2019

Dissonanzen in der Quantenschwingung

Neuartige Quanteninterferenz in atomar dünnen Halbleitern entdeckt.

Meldung vom 07.01.2019

Photovoltaik-Trend Tandemsolarzellen: Wirkungsgradrekord für Mehrfachsolarzelle auf Siliciumbasis

Siliciumsolarzellen dominieren heute den Photovoltaikmarkt aber die Technologie nähert sich dem theoretisch m ...

Meldung vom 07.01.2019

Forscher erzeugen Hybridsystem mit verschiedenen Quantenbit-Arten

Einem japanisch-deutschen Forschungsteam ist es erstmals gelungen, Informationen zwischen verschiedenen Arten ...

Meldung vom 21.12.2018

Mit Quanten-Tricks die Rätsel topologischer Materialien lösen

„Topologische Materialen“ sind technisch hochinteressant, aber schwer zu messen. Mit einem Trick der TU Wi ...

Meldung vom 21.12.2018

Moleküle aus mehreren Blickwinkeln

Lasergetriebene Röntgen-Laborquellen liefern neue Einsichten - Forscher am MBI haben erfolgreich Absorptionss ...

Meldung vom 21.12.2018

Beschreibung rotierender Moleküle leicht gemacht

Interdisziplinäres Wissenschaftlerteam entwickelt neue numerische Technik zur Beschreibung von Molekülen in ...



19.12.2018:
Tanz mit dem Feind
11.12.2018:
Die Kraft des Vakuums
30.11.2018:
Von der Natur lernen
24.11.2018:
Kosmische Schlange


11.05.2018:
Vorsicht, Glatteis!

Newsletter

Neues aus der Forschung