Schrödingers Katze mit 20 Qubits

Schrödingers Katze mit 20 Qubits

Physik-News vom 13.08.2019
 

Tot oder lebendig, linksdrehend oder rechtsdrehend – in der Quantenwelt können Teilchen wie die berühmte Analogie von Schrödingers Katze all das gleichzeitig sein. Einem internationalen Team, darunter Forscher mehrerer amerikanischer Spitzenuniversitäten, ist es nun gemeinsam mit Experten des Forschungszentrums Jülich gelungen, 20 verschränkte Quantenbits in einen solchen Zustand der Überlagerung zu versetzen. Die Erzeugung derartiger "Katzenzustände" gilt als wichtiger Schritt für die Entwicklung von Quantencomputern, die klassische Rechner bei der Lösung bestimmter Aufgaben weit übertreffen könnten.

Der Physiker Erwin Schrödinger hatte 1935 das Gedankenexperiment mit der Quantenkatze aufgebracht, in dem die Katze zusammen mit einem radioaktivem Präparat, einem Detektor und einer tödlichen Menge Gift in einer Kiste eingeschlossen ist. Sollte der radioaktive Stoff zerfallen, schlägt der Detektor Alarm und das Gift wird freigesetzt. Das Besondere daran: Nach den Regeln der Quantenmechanik ist anders als im Alltag nicht klar, ob die Katze tot ist oder lebendig. Sie wäre beides gleichzeitig, und zwar so lange, bis ein Experimentator nachschaut. Denn erst dann stellte sich ein eindeutiges Ergebnis ein.


Im Quantencomputing ist ein Katzenzustand - benannt nach der berühmten Analogie von Schrödingers Katze - ein Quantenzustand, der sich aus zwei entgegengesetzten Bedingungen gleichzeitig zusammensetzt.

Publikation:


A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin
Generation and manipulation of Schrödinger cat states in Rydberg atom arrays
Science, 09 Aug 2019

DOI: 10.1126/science.aax9743



Bereits seit Beginn der 1980er Jahre sind Forscher in der Lage, diese Überlagerung von Quantenzuständen mittels verschiedener Ansätze experimentell im Labor zu realisieren. "Diese Überlagerungszustände sind allerdings extrem empfindlich. Schon kleinste thermische Wechselwirkungen mit der Umgebung lassen sie kollabieren", erklärt Tommaso Calarco vom Forschungszentrum Jülich. Er spielt unter anderem eine führende Rolle in Europas großer Quanteninitiative, dem Quanten-Flaggschiffprogramm der EU. "Aus diesem Grund kann man bis jetzt auch nur deutlich weniger Quantenbits im Zustand von Schrödingers Katze realisieren als solche, die unabhängig voneinander existieren."

Von Letzteren können Forscher mittlerweile mehr als 50 in Laborexperimenten kontrollieren. Doch diese Quantenbits, oder kurz: Qubits, weisen nicht die besonderen Merkmale von Schrödingers Katze auf; anders dagegen die 20 Qubits, die das Forscherteam nun mithilfe eines sogenannten programmierbaren Quantensimulators erzeugt haben: ein Rekordwert, der selbst dann noch gilt, wenn man andere physikalische Ansätze mit optischen Photonen, Ionenfallen oder supraleitenden Schaltkreisen berücksichtigt.


Skizze des Experiments: Rubidiumatome werden mithilfe von Laserstrahlen eingefangen. Ein weiterer zusätzlicher Laser regt die Atome an, bis etwa die Hälfte von ihnen den Rydberg-Zustand erreicht.

Für die Entwicklung des Experiments hatten sich Forscher von mehreren der renommiertesten Einrichtungen der Welt zusammengeschlossen. Neben den Jülicher Forschern waren Wissenschaftler zahlreicher amerikanischer Spitzenuniversitäten – Harvard, Berkeley, MIT und Caltech – sowie der italienischen Universität Padua beteiligt.

"Qubits im Katzenzustand gelten für die Entwicklung von Quantentechnologien als das höchste Gut", erklärt Jian Cui. "Denn in der Überlagerung steckt das Geheimnis der ungeheuren Leistungsfähigkeit, die man sich von zukünftigen Quantencomputern verspricht," so der Physiker vom Jülicher Peter Grünberg Institut (PGI-8).

Klassische Bits in einem herkömmlichen Rechner haben immer nur einen bestimmten Wert, der sich beispielsweise aus 0 und 1 zusammensetzt. Sie lassen sich daher nur Bit für Bit nacheinander prozessieren. Qubits, die aufgrund des Überlagerungsprinzips mehrere Zustände gleichzeitig annehmen, können dagegen mehrere Werte parallel in einem Schritt speichern und verarbeiten. Ganz entscheidend ist dabei die Anzahl der Qubits. Mit einer Handvoll kommt man noch nicht weit.

Aber bei 20 Qubits liegt die Zahl der sich überlagernden Zustände bereits bei über einer Million. Und 300 Qubits können mehr Zahlen gleichzeitig speichern, als es Teilchen im Universum gibt.

Die neue Bestmarke von 20 Qubits kommt diesem Wert nun ein Stückchen näher, nachdem der alte Rekord von 14 Qubits seit 2011 unverändert bestand. Für ihr Experiment nutzten die Forscher einen programmierbaren Quantensimulator mit Atomen, die sich im Rydberg-Zustand befinden. Bei diesem Verfahren werden einzelne Atome, in diesem Fall Rubidiumatome, mithilfe von Laserstrahlen eingefangen und nebeneinander in einer Reihe auf ihrem Platz gehalten. Die Technik ist als „optische Pinzette“ bekannt. Ein weiterer zusätzlicher Laser regt die Atome an, bis etwa die Hälfte von ihnen den sogenannten Rydberg-Zustand erreicht, bei dem sich die Elektronen weit jenseits des Kerns befinden.

Dieser Prozess ist recht kompliziert und nimmt klassischerweise so viel Zeit in Anspruch, dass der empfindliche Katzenzustand in der Zwischenzeit schon wieder zerfällt. Die Forscher des Jülicher Peter Grünberg Instituts (PGI-8) konnten diese Vorbereitungszeit minimieren, indem sie die Art und Weise veränderten, wie der zweite Laser an- und ausgeschaltet wird – und ermöglichten so den neuen Rekord.

"Wir blähen die Atome praktisch soweit auf, bis ihre Atomhüllen mit den benachbarten Atomen verschmelzen und simultan zwei entgegengesetzte Konfigurationen einnehmen", erklärt Jian Cui. "Das geht soweit, dass sich die Wellenfunktionen wie bei Schrödingers Katze überlagern und wir einen Zustand nachweisen konnten, der auch als Greenberger–Horne–Zeilinger-Zustand bezeichnet wird."

Komplettiert wurde der Erfolg für die Quantenforschung durch eine weitere Arbeit einer chinesischen Forschungsgruppe, die ebenfalls in der aktuellen Ausgabe von „Science“ erschienen ist. Den Forschern ist es gelungen, mithilfe von supraleitenden Schaltkreisen 18 Qubits im Greenberger–Horne–Zeilinger-Zustand zu realisieren, was für diesen experimentellen Ansatz ebenfalls einen neuen Rekord darstellt.


Diese Newsmeldung wurde mit Material des Informationsdienstes der Wissenschaft (idw) erstellt







warte

warte

warte

warte

warte

warte

warte

warte

warte

warte