Physiker haben den Dreh mit den zweidimensionalen Kristallen raus

Neues aus der Forschung

11.05.2018

Physiker haben den Dreh mit den zweidimensionalen Kristallen raus

Regensburger Physiker untersuchen in einem internationalen Team atomar dünne Heterostrukturen


180511-1645_medium.jpg
 
Bei der Herstellung einer MoS2/WSe2-Heterostruktur können die Kristalle gezielt gegeneinander verdreht werden, um die elektronischen und optischen Eigenschaften der Struktur zu kontrollieren.
J. Kunstmann, F. Mooshammer, P. Nagler, A. Chaves, F. Stein, N. Paradiso, G. Plechinger, C. Strunk, C. Schüller, G. Seifert, D. R. Reichman, T. Korn
Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures
Nature Physics (2018)
DOI: 10.1038/s41567-018-0123-y

Regensburger Physiker um Dr. Tobias Korn, Institut für Experimentelle und Angewandte Physik der Universität Regensburg, haben in einer internationalen Kollaboration mit Forschern der TU Dresden und der Columbia University in New York atomar dünne Heterostrukturen aus den zweidimensionalen Materialien Molybdändisulfid (MoS2) und Wolframdiselenid (WSe2) untersucht und herausgefunden, dass sich die Ladungsträger (Elektronen und Löcher) in einer solchen Struktur nicht, wie bisher angenommen, komplett voneinander trennen, sondern sich teilweise in beiden Materialien gleichzeitig aufhalten. Dies ist eine wichtige Erkenntnis, sowohl für die Grundlagenforschung als auch für technologische Anwendungen.

Von Solarzellen bis hin zu Computern basiert Elektronik auf Halbleitern, welche typischerweise elektrischen Strom im Gegensatz zu Metallen nur schlecht leiten. Der Grund hierfür ist, dass in Metallen frei bewegliche Elektronen vorhanden sind, in Halbleitern sind die Elektronen jedoch stark gebunden und daher unbeweglich. Erst wenn man diese Ladungsträger beispielsweise mittels Licht, Wärme oder elektrischer Spannung anregt, können sie sich frei bewegen. Das hierbei angeregte, negativ geladene Elektron hinterlässt dabei ein positiv geladenes Loch. Kombiniert man zwei unterschiedliche Halbleiter geschickt in einer sogenannten Heterostruktur, so können die, z. B. durch Sonnenlicht angeregten Elektronen und Löcher, räumlich voneinander getrennt werden, wodurch in Solarzellen ein elektrischer Strom fließen kann.

Derzeit besteht Elektronik hauptsächlich aus kristallinem Silizium, aber in den vergangenen Jahren haben sich sogenannte zweidimensionale Materialien als erfolgsversprechende Kandidaten für zukünftige flexible und ultradünne Halbleitertechnologie bewiesen. Diese neuartigen Kristalle sind nur wenige Atomlagen dünn und können mit geringem technischem Aufwand präzise „aufeinandergestapelt“ werden. Bisher war man davon ausgegangen, dass sich die angeregten Ladungsträger auch in den so hergestellten ultradünnen Heterostrukturen räumlich komplett voneinander trennen, dass also das Elektron in das eine Material wandert und das Loch in das andere.

Ein entscheidender experimenteller Schritt für das Resultat der internationalen Kollaboration war, dass es den Forschern in Regensburg gelang, Heterostrukturen herzustellen, bei denen die beiden atomar dünnen Schichten präzise gegeneinander verdreht wurden. Dieser weitere Freiheitsgrad der zweidimensionalen Materialien gegenüber herkömmlichen Halbleitern wurde hierbei eingesetzt, um optische und elektronische Eigenschaften der Heterostrukturen gezielt zu beeinflussen.

Im Wesentlichen basiert der Effekt darauf, dass sich die beiden zweidimensionalen Kristalle für unterschiedliche Drehwinkel unterschiedlich nahe kommen, weil sich die Materialien unterschiedlich stark „im Weg sind“. Durch diesen veränderten vertikalen Abstand der beiden Halbleiter wird auch die Anziehung zwischen Elektron und Loch gezielt verändert.

In anschließenden Experimenten konnte beobachtet werden, dass die optischen Eigenschaften der Heterostrukturen eine deutliche Abhängigkeit vom Drehwinkel zeigen. Theoretischen Physikern der TU Dresden um Dr. Jens Kunstmann und der Columbia University um Prof. Dr. David Reichman gelang es mit Hilfe von aufwendigen Berechnungen zu zeigen, dass sich durch diese Beobachtung Rückschlüsse auf das Verhalten von Elektronen und Löchern in den jeweiligen Einzelschichten ziehen lassen. So wandert das Elektron zwar in das MoS2, das Loch hält sich jedoch in beiden Materialien auf und nicht nur, wie bisher angenommen, im WSe2.

Diese neuen Einsichten sind entscheidend für die Kontrolle optischer Effekte in den neuartigen zweidimensionalen Kristallen und für das Verständnis zukünftiger Technologie wie ultradünner Solarzellen.


09.08.2018

Quantenketten in Graphen-Nanobändern

Empa-Forschenden ist gemeinsam mit Forschenden des Max Planck Instituts für Polymerforschung in Mainz und wei ...

09.08.2018

Langsam, aber effizient

Intensive Laser-Cluster Wechselwirkungen führen zu niedrigenergetischer Elektronenemission

09.08.2018

Wärmer als gedacht: Sekundäroptik beim Wärmemanagement von Weißlicht-LEDs

Ein optimales Wärmemanagement ist entscheidend für die Leistung und Lebensdauer von Weißlicht-LEDs. Die Tem ...

08.08.2018

Weltrekord: Schnellste 3D-Tomographien an BESSY II

Ein HZB-Team hat an der EDDI-Beamline an BESSY II einen raffinierten Präzisions-Drehtisch entwickelt und mit ...

08.08.2018

Festes Kohlendioxid im tiefen Erdinneren - Neue Modelle der Entstehung von Diamanten nötig

Ein internationales Forschungsteam aus Wien und Florenz hat durch Messungen an der Europäischen Synchrotronst ...

08.08.2018

Eis unter Hochdruck: Bayreuther Forscher beobachten erstmals den Strukturwandel von Eiskristallen

Eiswürfel im Kühlschrank oder Eiszapfen an der Dachrinne sind vertraute Alltagsbeispiele für gefrorenes Was ...

08.08.2018

Neuartige Quantenkontrolle über ein Drei-Zustands-Spin-System

Wissenschaftler konnten erstmals die Quanteninterferenzen in einem quantenmechanischen Drei-Zustands-System un ...

07.08.2018

Millionenfache Verstärkung elektromagnetischer Wellen nahe Jupiter-Mond Ganymed

"Chorwellen" heißen so, weil sie klingen wie der Vogelchor im Morgengrauen. Tatsächlich jedoch sind es elekt ...

06.08.2018

Mit Elektronenstrahlstrukturierung zu höchstauflösenden OLED-Vollfarbdisplays

OLED-Mikrodisplays etablieren sich zunehmend für den Einsatz in künftigen Wearables und Datenbrillen. Um den ...

06.08.2018

Abstürzende Monde: Was bei der Kollision der frühen Erde mit ihren Begleitern passierte

Internationales Forscherteam unter Beteiligung der Universität Tübingen simuliert ein mögliches Schicksal d ...

05.08.2018

Akustische Oberflächenwellen geben in neuronalem Netz den Ton an

Biophysiker aus Augsburg und Santa Barbara berichten in "Physical Review E" über das erstmalige Gelingen eine ...

02.08.2018

Verbundprojekt VIPE: Vierbeiniger DFKI-Laufroboter unterstützt Marserkundung im Roboterschwarm

Die Entwicklung eines heterogenen, autonomen Roboterschwarms zur Erforschung des Valles Marineris auf dem Mars ...

01.08.2018

Einblick in Verlustprozesse in Perowskit-Solarzellen ermöglicht Verbesserung der Effizienz

In Perowskit-Solarzellen gehen Ladungsträger vor allem durch Rekombination an Defekten an den Grenzflächen v ...



11.05.2018:
Vorsicht, Glatteis!





Das könnte Dich auch interessieren


Newsletter

(Neues aus der Forschung)